Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Comparative study of different polyatomic ions of electrolytes on electricity generation and dye decolourization in photocatalytic fuel cell
 
Options

Comparative study of different polyatomic ions of electrolytes on electricity generation and dye decolourization in photocatalytic fuel cell

Journal
Journal of Water Process Engineering
ISSN
22147144
Date Issued
2020-10-01
Author(s)
Ong Y.P.
Ho Li Ngee
Universiti Malaysia Perlis
Ong S.A.
Banjuraizah Johar
Universiti Malaysia Perlis
Ibrahim A.H.
Lee S.L.
Nordin N.
DOI
10.1016/j.jwpe.2020.101479
Abstract
Developing an effective interface interaction between photoanode and electrolyte is crucial for achieving superior photocatalytic fuel cell (PFC) performance. In this aspect, the contribution of the medium or electrolyte properties in the PFC system such as dye concentration, ionic nature and active radicals play a decisive role. Herein, we constructed a PFC with ZnO loaded nickel foam (ZnO/Ni) photoanode to study the influence of initial dye concentration, pH and supporting electrolytes of different polyatomic anions on the PFC performance. The optimum initial dye concentration and pH for the PFC with reactive red 120 as organic pollutants were found to be 30 mg L−1 and 7.5, respectively. The PFC performance can be synergistically enhanced by the addition of three types of polyatomic anions (Na3PO4, Na2SO4 and NaNO3) as supporting electrolytes. In turn, PO43- had the greatest influence on the reduction of internal resistance (highest short circuit current, Jsc) which corresponded to the conductivity of dye solution. Eventually, the higher charge of polyatomic ions could contribute to higher energy conversion efficiency in PFC. Nonetheless, SO42- anions favoured the cleavage of aromatic compounds by the advantage of recycling between SO42- and SO4[rad]- through hole scavenging activity. Comprehensively, our findings provided new insight into the selection of supporting electrolyte as well as the proposed mechanism of active radicals involved in PFC. Additionally, the ZnO/Ni photoanode demonstrated its excellent recyclability as it retained high PFC performance after five consecutive runs.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Conductivity | Degrad...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies