Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process
 
Options

Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process

Journal
Arabian Journal for Science and Engineering
ISSN
2193567X
Date Issued
2020-07-01
Author(s)
Abdellah El-Hadj A.
Shayfull Zamree Abd. Rahim
Universiti Malaysia Perlis
Mohd. Nasir Mat Saad
Universiti Malaysia Perlis
Tan C.L.
DOI
10.1007/s13369-020-04396-8
Abstract
As a matter of fact, the cooling method selection is one of the most important steps in the design of injection mould. However, inappropriate cooling system will result in many undesired defects such as differential shrinkage and warpage on the moulded part. From this point of view, the comprehensive study of cylindrical void method (CVM) has been attempted in this study which is known as an alternative effective cooling method. Therefore, this study employs the three-dimensional time-dependent numerical analysis to determine the performance of cooling injection moulding. Initially, a finite element method is used to solve the system of equations of the flow and heat transfer problem. Subsequently, the temperature fields and other analysis results have been obtained via ANSYS Workbench. The study reveals that the Nusselt number, Biot Number and heat flux at the fluid–core interface are smaller when the CVM method is being used compared to the straight-drilled method. These results are mainly attributed to the presence of big vortices which prevent a complete heat transfer. Consequently, the use of the CVM method does not improve the cooling efficiency, but it is a good idea and requires further investigation.
Funding(s)
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Subjects
  • Cooling | Cylindrical...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies