Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. The Influenced of Different Magnetization Patterns on the Performance of the Semi-buried Permanent Magnet Synchronous Machine
 
Options

The Influenced of Different Magnetization Patterns on the Performance of the Semi-buried Permanent Magnet Synchronous Machine

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2021-06-11
Author(s)
Syauqina Akmar Mohd-Shafri
Universiti Malaysia Perlis
Muhamad Haniff Sani
Universiti Malaysia Perlis
Tiang Tow Leong
Universiti Malaysia Perlis
Ishak D.
Mohd Saufi Ahmad
Universiti Malaysia Perlis
Leong Jenn Hwai , Jenn
Universiti Malaysia Perlis
Tan C.J.
Ong Hui Lin
Universiti Malaysia Perlis
DOI
10.1088/1742-6596/1878/1/012031
Abstract
The performance of semi-buried permanent magnet synchronous machines (SBPMSMs) by the influence of two magnetization patterns are presented in this paper. These magnetization patterns include radial and parallel, which applied into 9-slot/8-pole (9s/8p) and 6-slot/4-pole (6s/4p) SBPMSMs. Hence, to evaluate the machines performance, AutoCAD and Opera2D finite element software are used to model and predict the electromagnetic characteristic performance of SBPMSMs. Two PM machines are optimized i.e. flux density distribution, phase back-EMF, and cogging torque by two magnetization patterns. The phase back-EMF of the machines are computed into harmonic components to investigate the total harmonic distortion (THDv ). It is found that the lowest THDv for both 9s/8p and 6s/4p motors are in parallel magnetization (PaM), which are 8.66% and 3.98%, respectively. However, the lowest cogging torque for 9s/8p is radial magnetization (RaM), which is 0.0101 Nm and for 6s/4p is 0.1730 Nm with parallel magnetization pattern. By comparing the result of the optimum magnet pole arc for both motors, the 6s/4p motors show the minimum cogging torque and harmonic distortions are 0.16 Nm and 1.63% in PaM patterns. As a result, optimum motor performances among these two motors are 6s/4p PM motors with PaM pattern.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies