Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Deep Learning with FPGA: Age and Gender Recognition for Smart Advertisement Board
 
Options

Deep Learning with FPGA: Age and Gender Recognition for Smart Advertisement Board

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2023-10-06
Author(s)
Yeoh W.S.
Fazrul Faiz Zakaria
Universiti Malaysia Perlis
Mustapa M.
Mohd Nazri Mohd Warip
Universiti Malaysia Perlis
Phak Len Al Eh Kan
Universiti Malaysia Perlis
Mozi A.M.
DOI
10.1063/5.0112167
Abstract
Age and gender recognition are helpful in various applications, especially in the field of advertising. To replace the traditional advertising method that can only display the same contents to all audiences, a smart advertisement board capable of detecting age and gender of audiences to display relevant contents is required to increase the effectiveness of advertising. This paper will use two image datasets to train and test the Convolutional Neural Network (CNN) based architecture models for age and gender recognition using deep learning. The dataset that produced the best performing model will be implemented on three different devices to observe the performance of the models on each device. A gender recognition model with accuracy of 91.53% and age recognition model with accuracy of 59.62% is produced. The results have also shown the use of Field Programmable Gated Array (FPGA) has greatly boosted the performance of the models in terms of throughput and latency.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies