Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2017
  5. A methodology of nearest neighbor: Design and comparison of biometric image database
 
Options

A methodology of nearest neighbor: Design and comparison of biometric image database

Date Issued
2017-01-06
Author(s)
Haryati Jaafar
Universiti Malaysia Perlis
Nordiana Mukahar
Universiti Sains Malaysia
Dzati Athiar Ramli
Universiti Sains Malaysia
DOI
10.1109/SCORED.2016.7810073
Abstract
The nearest neighbor (NN) is a non-parametric classifier and has been widely used for pattern classification. Nevertheless, there are some problems encountered that leads to the poor performance of the NN i.e. the samples distribution, weighting issues and computational time for large databases. Hence, various classifiers i.e. k Nearest Neighbor (kNN), k Nearest Centroid Neighborhood (kNCN), Fuzzy k Nearest Neighbor (FkNN), Fuzzy-Based k Nearest Centroid Neighbor (FkNCN) and Improved Fuzzy-Based k Nearest Centroid Neighbor (IFkNCN) were proposed to improve the performance of the NN. This paper presents a review of aforementioned classifiers including the taxonomy, toward the implementation of classifiers in biometric image database. Two databases i.e. finger print and finger vein have been employed and the performance of classifiers were compared in term of processing time and classification accuracy. The results show that the IFkNCN classifier owns the best accuracies to the kNN, kNCN FkNN and FkNCN with 97.66% and 96.74% for fingerprint and finger vein databases, respectively.
Subjects
  • K nearest neighbor

  • k Nearest Centroid Ne...

  • Fuzzy k Nearest Neigh...

  • Fuzzy-Based k Nearest...

  • Improved Fuzzy-Based ...

  • Image database

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies