Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Faculty of Electronic Engineering & Technology (FKTEN)
  4. Journal Articles
  5. An introduction to double stain normalization technique for brain tumour histopathological images
 
Options

An introduction to double stain normalization technique for brain tumour histopathological images

Journal
International Journal of Electrical and Computer Engineering (IJECE)
ISSN
2722-2578
2088-8708
Date Issued
2024
Author(s)
Fahmi Akmal Dzulkifli
Mohd Yusoff Mashor
Rafikha Aliana A Raof
Universiti Malaysia Perlis
Hasnan Jaafar
DOI
10.11591/ijece.v14i1.pp375-388
Abstract
<jats:p>Stain normalization is an image pre-processing method extensively used to standardize multiple variances of staining intensity in histopathology image analysis. Staining variations may occur for several reasons, such as unstandardized protocols while preparing the specimens, using dyes from different manufacturers, and varying parameters set while capturing the digital images. In this study, a double stain normalization technique based on immunohistochemical staining is developed to improve the performance of the conventional Reinhard’s algorithm. The proposed approach began with preparing a target image by applying the contrast-limited adaptive histogram equalization (CLAHE) technique to the targeted cells. Later, the colour distribution of the input image will be matched to the colour distribution of the target image through the linear transformation process. In this study, the power-law transformation was applied to address the over-enhancement and contrast degradation issues in the conventional method. Five quality metrics comprised of entropy, tenengrad criterion (TEN), mean square error (MSE), structural similarity index (SSIM) and correlation coefficient were used to measure the performance of the proposed system. The experimental results demonstrate that the proposed method outperformed all conventional techniques. The proposed method achieved the highest average values of 5.59, 3854.11 and 94.65 for entropy, TEN, and MSE analyses.</jats:p>
File(s)
research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies