Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Heart Arrhythmia Classification Using Deep Learning: A Comparative Study
 
Options

Heart Arrhythmia Classification Using Deep Learning: A Comparative Study

Journal
6th Iraqi International Conference on Engineering Technology and its Applications, IICETA 2023
Date Issued
2023-01-01
Author(s)
Radi O.
Alslatie M.
Wan Azani Wan Mustafa
Universiti Malaysia Perlis
Alquran H.
Badarneh A.
Mohammed F.F.
Alkhayyat A.
DOI
10.1109/IICETA57613.2023.10351336
Abstract
Heart arrhythmia is an irregular heartbeat that causes heart problems. It can be classified by their seriousness into serious and non-serious arrhythmia. Mainly to diagnose heart arrhythmias, we use Electrocardiogram (ECG). In this paper, the authors compared three different models of classifiers: Convolutional Neural Network, Dense Neural Network and Long Short-Term Memory to classify cardiac arrhythmia into two types normal and abnormal, using the MIT-BIH database. The results show that CNN and DNN have the best result of the models with 99% accuracy while LSTM shows 60 accuracy percent.
Subjects
  • arrhythmia classifica...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies