This research aims to examine the performance of photocatalytic nanocomposite membrane for methyl orange dye (MO) removal. Multiwalled carbon nanotubes (MWCNTs) and titanium dioxide (TiO₂) are used as nanofillers to produce photocatalytic membranes via insitu colloidal precipitation method. The weight ratio of MWCNT:TiO₂ were manipulated at 10:0, 5:5, and 0:10 with nanomaterials concentration of 0.1 g/L. The membranes were characterized by surface hydrophilicity, porosity and pore size, and surface charge. The membrane performance was assessed using dead-end membrane filtration method to determine water permeability, dye rejection, and fouling propensity. Pure TiO₂ membrane improved water permeability by 22.57% due to increasing hydrophilicity and large porosity. For dye rejection, pristine membrane outperformed the nanocomposite membranes with a rejection of 25.52% due to the small membrane pore size by sieve mechanism. Lastly, all the nanocomposite membranes showed better antifouling properties with higher normalized flux for pure MWCNTs (0.6822), TiO₂ (0.6781), MWCNT/TiO₂ (0.7239) membranes relative to the pristine membrane (0.6039). The pure TiO₂ membrane has the highest improvement in flux recovery (19.87%) due to dye photodegradation under UV light assisted in membrane cleaning and defouling. Overall, this study demonstrates that photocatalytic nanocomposite membrane can be produced via in-situ colloidal precipitation method.