Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2017
  5. Novel palm fatty acid functionalized magnetite nanoparticles for magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from environmental samples
 
Options

Novel palm fatty acid functionalized magnetite nanoparticles for magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from environmental samples

Journal
Journal of Oleo Science
ISSN
13458957
Date Issued
2017-01-01
Author(s)
Siti Khalijah Mahmad Rozi
Universiti Malaysia Perlis
Hamid Rashidi Nodeh
Muhammad Afzal Kamboh
Ninie Suhana Abdul Manan
Universiti Malaya
Sharifah Mohamad
Universiti Malaya
DOI
10.5650/jos.ess17016
Abstract
A novel adsorbent, palm fatty acid coated magnetic Fe3O4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL–1. The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.
Funding(s)
Universiti Malaya
Subjects
  • Magnetic nanoparticle...

  • Magnetic nanoparticle...

  • Magnetic solid phase ...

  • Palm fatty acid

  • Polycyclic aromatic h...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies