Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Faculty of Electrical Engineering & Technology
  4. Journal Articles
  5. Inline 3D volumetric measurement of moisture content in rice using regression-based ML of RF tomographic imaging
 
Options

Inline 3D volumetric measurement of moisture content in rice using regression-based ML of RF tomographic imaging

Journal
Sensors
ISSN
1424-8220
Date Issued
2022
Author(s)
Abd Alazeez Almaleeh
Universiti Malaysia Perlis
Ammar Zakaria
Universiti Malaysia Perlis
Latifah Munirah Kamarudin
Universiti Malaysia Perlis
Mohd Hafiz Fazalul Rahiman
Universiti Malaysia Perlis
David Lorater Ndzi
University of the West of Scotland
Ismahadi Ismail
Space Science System, Sdn. Bhd.
DOI
10.3390/s22010405
Handle (URI)
https://www.mdpi.com/1424-8220/22/1/405/pdf
https://www.mdpi.com/1424-8220/22/1/405/html
https://hdl.handle.net/20.500.14170/3059
Abstract
The moisture content of stored rice is dependent on the surrounding and environmental factors which in turn affect the quality and economic value of the grains. Therefore, the moisture content of grains needs to be measured frequently to ensure that optimum conditions that preserve their quality are maintained. The current state of the art for moisture measurement of rice in a silo is based on grab sampling or relies on single rod sensors placed randomly into the grain. The sensors that are currently used are very localized and are, therefore, unable to provide continuous measurement of the moisture distribution in the silo. To the authors’ knowledge, there is no commercially available 3D volumetric measurement system for rice moisture content in a silo. Hence, this paper presents results of work carried out using low-cost wireless devices that can be placed around the silo to measure changes in the moisture content of rice. This paper proposes a novel technique based on radio frequency tomographic imaging using low-cost wireless devices and regression-based machine learning to provide contactless non-destructive 3D volumetric moisture content distribution in stored rice grain. This proposed technique can detect multiple levels of localized moisture distributions in the silo with accuracies greater than or equal to 83.7%, depending on the size and shape of the sample under test. Unlike other approaches proposed in open literature or employed in the sector, the proposed system can be deployed to provide continuous monitoring of the moisture distribution in silos.
Subjects
  • 3D volumetric

  • Moisture content

  • Machine learning

  • Tomographic imaging

File(s)
Inline 3D Volumetric Measurement of Moisture Content in Rice Using Regression-Based ML of RF Tomographic Imaging.pdf (2.87 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
Downloads
7
Acquisition Date
Nov 19, 2024
View Details
google-scholar
  • About Us
  • Contact Us
  • Policies