Sulfur dioxide (SO2) emitted into the atmosphere by fossil fuel burning in the industries posed significant negative effects on humans and the environment. SO2 removal performance of two mesoporous silica: KCC-1 and SBA-15, are compared through breakthrough experiments on a lab-scale fixed bed reactor. The mesoporous silicas were characterized via nitrogen (N2) adsorption-desorption isotherm and field emission scanning electron microscopy (FESEM). KCC-1 demonstrates characteristics of capillary condensation and non-uniform slit-shaped pores while SBA-15 displays characteristic of a narrow range of mesopores with minimal network effects. Surface area, total pore volume and average pore diameter of KCC-1 are significantly greater than SBA-15 due to the presence of dendrimeric fibrous morphology. Under tested conditions, SO2 adsorption capacities of KCC-1 and SBA-15 are 614.01 mg/g and 274.64 mg/g, respectively. Superior performance by KCC-1 can be attributed to better accessibility of SO2 towards the active sites due to higher surface area provided by the dendrimer fibers.