Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Effect of sintering temperature on dielectric and electrical properties of bio-waste derived beta-dicalcium silicate
 
Options

Effect of sintering temperature on dielectric and electrical properties of bio-waste derived beta-dicalcium silicate

Journal
Materials Chemistry and Physics
ISSN
02540584
Date Issued
2023-11-01
Author(s)
Mohd Yunus S.N.H.
Khor Shing Fhan
Universiti Malaysia Perlis
Banjuraizah Johar
Universiti Malaysia Perlis
Nur Maizatul Shima Adzali
Universiti Malaysia Perlis
Jakfar N.H.
Cheng Ee Meng
Universiti Malaysia Perlis
Mohd Tarmizi E.Z.
Talib Z.A.
DOI
10.1016/j.matchemphys.2023.128339
Abstract
Beta-dicalcium silicate ceramics were synthesized by mechanochemical-assisted solid-state reaction route using rice husks and chicken eggshells as silica and calcium oxide sources. The ceramics were sintered at 900, 1000, and 1100 °C for 2 h in air. The effect of sintering temperature on these ceramics' morphological, breakdown strength, dielectric, and electrical properties was investigated. It was found that the ceramic sintered at the optimized temperature of 1100 °C formed the pure β-dicalcium silicate (β-Ca2SiO4). Scanning electron micrographs showed that with the increase in sintering temperature, the average grain size and pore size of the sintered ceramics increased while the grain boundary density decreased, which promoted the breakdown path and resulted in a decrease in breakdown strength. The dielectric behavior examined from 25 to 300 °C and in a frequency range of 4–5 MHz found that the dielectric constant and loss tangent decreased with increasing frequency. Nyquist plot of impedance confirmed a non-Debye type relaxation, and grain and grain boundary contributions were revealed from equivalent circuit fitting. Variations of impedance spectroscopy reflect the positive and negative temperature coefficient of resistance behavior for these ceramics. Electric modulus spectra revealed that with the sintering temperature increase, the samples' conductivity activation energies increased from 0.35 to 0.46 eV. All the sintered samples attained low dielectric loss (0.004 < tanδ < 0.1) above 103 Hz, which makes them suitable materials for capacitor application.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Dicalcium silicate | ...

File(s)
research repository notification.pdf (4.4 MB) research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies