Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Tribological Behaviour of Graphene Nanoparticles as an Additive in Vegetable Based Oil
 
Options

Tribological Behaviour of Graphene Nanoparticles as an Additive in Vegetable Based Oil

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2024-04-19
Author(s)
Noor N.Z.M.
Zailani Zainal Abidin
Universiti Malaysia Perlis
Zain M.Z.M.
Norshah Aizat Shuaib
Universiti Malaysia Perlis
DOI
10.1063/5.0183289
Handle (URI)
https://hdl.handle.net/20.500.14170/5244
Abstract
Friction between cutting tool and workpiece generates heat, which can shorten tool life and impair the quality of machined parts. Thus, the use of appropriate lubricants is required to mitigate these issues. In this research, the use of different weight concentration of graphene nanoparticles (0.1 %, 0.5 % and 1.0 %) to augment commercially available vegetable-based oil, LB3000 was investigated using tribological test. Their performances were evaluated in form of the coefficient of friction, wear scar diameter, kinematic viscosity and thermal conductivity. Higher concentration of graphene was found to be more effective in terms of lowering coefficients of friction, reducing wear scar diameter, and improving kinematic viscosity and thermal conductivity. This study clearly demonstrates that a suitable combination of graphene nanoparticles in oil can improve tribological behaviour as well as lubrication performance.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies