Now showing 1 - 2 of 2
  • Publication
    The effect of aging time on microstructure and hardness value of AZ80 Mg Alloy
    AZ 80 Magnesium (Mg) alloy (AZ80) is the lightest structural metallic materials with good mechanical properties. However, Mg AZ80 has drawbacks which result in poor ductility and low strength where applications of Mg alloy have been restricted. The AZ80 has high aluminium content can cause the precipitation of ß-phase which is Mg17Al12 in Mg-Al alloy. It can affect the mechanical properties such as poor strengthening. This paper was discussed the effect of aging time on microstructure and hardness value of AZ80. The AZ80 samples were cut to 1cm × 1cm. Samples heat treated at 360 C for one-hour quenching in water. Then, samples aged at 170 C with different aging times (2 to 8 hours) with same quench. Optical Microscope (OM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Vickers Microhardness machine were used to analyse the samples. As the results showed ß-Mg17Al12 phase was discontinuously distributed along the grain boundary throughout solid solution treatment. The ß-Mg17Al12 phase did not fully dissolve into the α-Mg phase and distributed along the grain boundary. The results showed that sample after 2 hours aging time with highest hardness value 62.5 HV is the optimum sample.
  • Publication
    Impact of AC anodizing on SS304L oxide film and its effect on hydrogen evolution reaction (HER) properties
    ( 2023-12)
    Nur Suhaily Azmi
    ;
    ;
    The effect of AC anodizing on the formation of oxide film on stainless steel 304L (SS304L) surfaces and its influence on the hydrogen evolution reaction (HER) were studied in this study. The SS304L specimens were prepared before being anodized for 30 minutes at various voltages (range from 10 V to 50 V) using an AC power supply at room temperature. The surface morphology is studied using scanning electron microscope (SEM) and 3D profilometer. A potentiostat is used to run linear sweep voltammetry (LSV) and Tafel analysis for the HER characterization. The result recorded the highest thickness of 9273.45 nm at 40 V anodizing voltage and the lowest surface roughness of 837.16 nm recorded at 50 V. The linear sweep polarization test solution exhibited the lowest overpotential at 50 V, 398.3 mV and a Tafel slope of 196 mVdec-1. These findings provide insight on the possibility of AC anodizing for improving the surface characteristics of SS304L for use in energy conversion applications.