Now showing 1 - 2 of 2
  • Publication
    Effects of pH and concentration on the capability of E. coli and S. epidermidis with bentonite clay as biosorbent for the removal of Copper, Nickel and Lead from polluted water
    ( 2017)
    Delia B. Senoro
    ;
    Josel B. Godezano
    ;
    Meng-Wei Wan
    ;
    Lemmuel L. Tayo
    ;
    ; ;
    This paper discusses the effects of pH and concentration on the capability of E. coli ATCC29522 and S. epidermidis RP62A biofilm with bentonite in removing divalent copper, nickel and lead from wastewater. Batch adsorption study at laboratory scale was utilized to evaluate the potential use of bacterial biomass (E. coli ATCC29522 and S. epidermidis RP62A) aided with geosynthetic clay (bentonite) for the removal of Cu2+, Ni2+and Pb2+. Results revealed that removal of Cu2+, Ni2+and Pb2+ by both types of organisms supported with bentonite were high in the first 4 hours of the experiment. This illustrates that the binding site on that particular time was abundant. Hence, the removal rate was evident at high concentration depicting the line adsorption equilibrium. It also revealed that S. epidermidis RP62A supported with bentonite had the highest affinity to Copper and Lead with Qm = 277.7 mg/g and 5.0075 mg/g, respectively. While E. coli ATCC 29522 had the highest affinity to Nickel (Qm= 58.82 mg/g). Hence, the sorption of Cu2+, Ni2+and Pb2+ onto E. coli ATCC29522 and S. epidermidis RP62A biofilm supported with bentonite clay occurred through monolayer chemisorption on the homogeneous surface of E. coli ATCC29522 and S. epidermidis RP62A biofilm with bentonite clay. Batch kinetics studies revealed that the sorption of Cu2+, Ni2+and Pb2+ onto E. coli ATCC29522 and S. epidermidis RP62A biofilm supported with bentonite clay was well described by a pseudo-second-order equation model of type 1 (R2 = 0.9999), which implies that chemisorption is the rate limiting step.
  • Publication
    Determination of drying kinetics and sorption isotherm of black pepper (Piper Nigrum)
    ( 2017)
    Flordeliza C. De Vera
    ;
    Vanessa Bernadette B. Atienza
    ;
    Jomicah B. Capili
    ;
    ;
    In the present study of food products, determination of the drying characteristics of black pepper using an oven is not yet completely established. This study aimed to determine the drying kinetics and sorption isotherm of black pepper using a convective oven at 30°C, 40°C and 50°C. The data gathered in this study were used to fit in selected mathematical models for drying kinetics and sorption isotherm. Among these models, the Midilli model (MR=0.5338exp(0.7273t-0.0551)+-0.0005t for 30°C, MR=0.5814exp(0.6293t-0.0764)+ -0.0008t for 40°C and MR=0.3187exp(1.1777t-0.0466)+ -0.0011t for 50°C) was the best fit to explain the moisture transfer in black pepper, while the GAB Model (m/0.1302=((0.1906)( 0.7811)aw)/(1-(0.7811)aw)[1-(0.7811)aw+(0.1906)( 0.7811)aw])) was for the equilibrium moisture content and water activity relationship. After evaluating the data, the drying characteristics of black pepper at 40°C yielded better results than 30°C and 50°C. XLSTAT and ANOVA Add-in of Microsoft Excel was the software used to compute for the necessary values in the assessment of the mathematical models for this study.