Now showing 1 - 1 of 1
  • Publication
    Investigation on Body Mass Index Prediction from Face Images
    ( 2021-03-01)
    Chong Yen Fook
    ;
    ; ;
    Lim Whey Teen
    ;
    ;
    Body mass index is a measurement of obesity based on measured height and weight of a person and classified as underweight, normal, overweight and obese. This paper reviews the investigation and evaluation of the body mass index prediction from face images. Human faces contain a number of cues that are able to be a subject of a study. Hence, face image is used to predict BMI especially for rural folks, patients that are paralyzed or severely ill patient who unable to undergoes basic BMI measurement and for emergency medical service. In this framework, 3 stages will be implemented including image pre-processing such as face detection that uses the technique of Viola-Jones, iris detection, image enhancement and image resizing, face feature extraction that use facial metric and classification that consists of 3 types of machine learning approaches which are artificial neural network, Support Vector Machine and k-nearest neighbor to analyze the performance of the classification. From the results obtained, artificial neural network is the best classifier for BMI prediction system with the highest recognition rate of 95.50% by using the data separation of 10% of testing data and 90% of training data. In a conclusion, this system will help to advance the study of social aspect based on the body weight.
      1