Now showing 1 - 2 of 2
  • Publication
    Non-invasive Detection of Ketum Users through Objective Analysis of EEG Signals
    ( 2021-11-25)
    Nawayi S.H.
    ;
    ; ;
    Rashid R.A.
    ;
    Planiappan R.
    ;
    Lim C.C.
    ;
    Fook C.Y.
    ;
    Ketum leaves are traditionaly used for treatment of backpain and reduce fatigue. However, in recent years people use ketum leaves to substitute traditional drugs as they can easily be obtained at a low cost. Currently, a robust test for ketum detection is not available. Although ketum usage detection via test strip is available, however, the method is possible to be polluted by other substances and can be manipulated. Brain signals have unique characteristics and are well-known as a robust method for recognition and disease detection. Thus, this study has been done to distinguish between ketum users and non-users via brain signal characteristics. Eight participants were chosen, four of whom are heavy ketum users and four non-users with no health issues. Data were collected using the eegoSports device in relaxed state. In pre-processing, notch filter and Independent Component Analysis (ICA) were used to remove artifacts. Wavelet Packet Transform (WPT) was used to reduce the large data dimension and extract features from the brain signal. To select the most significant features, T-Test was used. Support Vector Machine (SVM), K-Nearest Neighbour, and Ensemble classifier were used to categorize the input data into ketum users and non-users. Ensemble classifier was found to be able to predict the testing instances with 100% accuracy for open and closed eyes task with Teager energy and energy to standard deviation ratio as the features.
  • Publication
    Real and complex wavelet transform using singular value decomposition for malaysian speaker and accent recognition
    ( 2021-01-01) ; ;
    Muthusamy H.
    ;
    ;
    Abdullah Z.
    This paper presents a new approach for Malaysian speaker and accent recognition using wavelet feature extraction method, namely Wavelet Packet Transform (WPT), Discrete Wavelet Packet Transform (DWPT) and Dual Tree Complex Wavelet Packet Transform (DT-CWPT). Since Singular Value Decomposition (SVD) was based on factorization and summarization technique which reduces a rectangular matric, it is applied on those features to evaluate the performance for speaker and accent recognition. The features are derived from wavelets and SVD classified with three different classifiers namely k-Nearest Neighbors (k-NN), Support Vector Machine (SVM) and Extreme Learning Machine (ELM). In this work, English digits (0–9) and Malay words database uttered from 75 undergraduate students of Universiti Malaysia Perlis (UniMAP) which are Malays, Chinese and Indian. The Malay words had a combination of consonants and vowels in monosyllable and bi-syllable structure. The accuracy of file-based analysis achieved were above 81% while for frame-based analysis, 93.87% and above were obtained using three different classifiers (k-NN, SVM and ELM) for speaker and accent recognition. Through the experiments, it is observed that accent recognition achieved high recognition rate of 100% for both framed-based analysis and file-based analysis using SVM. The experimental results show the proposed features using SVD achieved high accuracy of 100% using SVM through English digits and Malay words in accent recognition. This indicated that feature extraction using wavelets (WPT, DWPT and DT-CWPT) with SVD can achieve a good performance for both English digits and Malay words.