Options
Vikneswaran Vijean
Preferred name
Vikneswaran Vijean
Official Name
Vijean, Vikneswaran
Alternative Name
Vikneswaran
Vikneswaran, V.
Vijean, V.
Main Affiliation
Scopus Author ID
54785424700
Researcher ID
D-2539-2015
Now showing
1 - 3 of 3
-
PublicationEffect of Mindfulness Meditation toward Improvement of Concentration based on Heart Rate Variability( 2020-12-20)
; ;Rosli F.F.B. ;Fook C.Y. ; ;Palaniappan R.Mindfulness meditation is a type of therapy for a psychological cure like depression and anxiety that can significantly increase peoples' ability to concentrate and focus. Thus, this paper describes the analysis of mindfulness meditation effect toward concentration study in term of heart rate variability (HRV) signal. A memory test is used as a medium to test the concentration level of 20 participants, and their performance of the electrocardiogram signal was recorded. Peaks detection method and Pan-Tompkin method are used to extract the features like PQRST peaks and R-R interval from the ECG signal. Then, the extracted ECG signal features are classified using KNN method for before and after meditation during the memory test. The result shows that the effect of mindfulness meditation can improve the performance of participants' concentration level. The highest accuracy, sensitivity and specificity performance is obtained from the combination of all six features (P, Q, R, S, T peaks, and R-R interval value), which is 84.58 %, 88.77% and 80.39%. The analysis of memory test produces higher memory test score (69.2%), lesser miss selection (60.8%) and shorter taken time to complete the memory test (2.268 minutes) after mindfulness meditation compared to before mindfulness meditation. The R-R interval value represents heart rate variability (HRV) is important to prove that most of the participants are more relax and can handle their stress better after doing mindfulness meditation.5 19 -
PublicationNon-invasive Detection of Ketum Users through Objective Analysis of EEG Signals( 2021-11-25)
;Nawayi S.H. ; ; ;Rashid R.A. ;Planiappan R. ;Lim C.C. ;Fook C.Y.Ketum leaves are traditionaly used for treatment of backpain and reduce fatigue. However, in recent years people use ketum leaves to substitute traditional drugs as they can easily be obtained at a low cost. Currently, a robust test for ketum detection is not available. Although ketum usage detection via test strip is available, however, the method is possible to be polluted by other substances and can be manipulated. Brain signals have unique characteristics and are well-known as a robust method for recognition and disease detection. Thus, this study has been done to distinguish between ketum users and non-users via brain signal characteristics. Eight participants were chosen, four of whom are heavy ketum users and four non-users with no health issues. Data were collected using the eegoSports device in relaxed state. In pre-processing, notch filter and Independent Component Analysis (ICA) were used to remove artifacts. Wavelet Packet Transform (WPT) was used to reduce the large data dimension and extract features from the brain signal. To select the most significant features, T-Test was used. Support Vector Machine (SVM), K-Nearest Neighbour, and Ensemble classifier were used to categorize the input data into ketum users and non-users. Ensemble classifier was found to be able to predict the testing instances with 100% accuracy for open and closed eyes task with Teager energy and energy to standard deviation ratio as the features.30 3 -
PublicationClinical validation of 3D mesh reconstruction system for spine curvature angle measurement( 2023-02-21)
;Shanyu C. ; ;Fook C.Y. ;Azizan A.F. ; ;Spine curvature disorders are scoliosis, lordosis, and kyphosis. These disorders are mainly caused by the bad habits of the person during sitting, standing, and lying. There are about 3 to 5 out of 1,000 people who are affected by spine curvature disorder. The current conventional method used for diagnose this disorder, such as radiography, goniometry and palpation. However, these conventional methods require human skills and can be time-consuming, resulting to exhaustion of logistic. Therefore, there is a need to solve this problem by creating a Graphical User Interface (GUI) to analyse the human body posture through the 3D reconstructed model of the person. Hence, 3D map meshing reconstruction of the human body method is proposed. This project divided into three parts, which are the development of the GUI for human posture analysis, clinical validation and posture analysis of the 3D model. The 3D model reconstructed from 3D mapping parameters shows 100% accuracy of the assessed point. The lowest difference of angle for the comparison between clinical method (goniometer) and the GUI for male is (A.Pe) 0.930±0.870 and 1.240±0.860 for female (P.Pe). This finding of 3D model assessment system can be helpful for medical doctor to diagnose patient who have spine problem.1 30