Options
Syahrul Ashikin Azmi
Preferred name
Syahrul Ashikin Azmi
Official Name
Syahrul Ashikin, Azmi
Alternative Name
Azmi, Syahrul Ashikin Binti
Azmi, S. A.
Azmi, Syahrul A.
Affandi Saidi, S.
Main Affiliation
Scopus Author ID
54928364200
Researcher ID
X-2468-2019
Now showing
1 - 4 of 4
-
PublicationIntegrated clustering development using embedded meta evolutionary-firefly algorithm technique for DG planning( 2020-12-01)
;Musirin I. ;Othman M.M.Recent trend changes have created opportunities to achieve numerous technological innovations including the use of distributed generation (DG) to achieve different advantages. A precise evaluation of energy losses is expanding rapidly when DG is connected to the electricity sector due to developments such as increased competition and real time pricing. Nevertheless, non-optimal DG installation either in the form of DG locations and sizing will lead to possible under-compensation or over-compensation phenomena. The integrated clustering resulted from the pre-developed Embedded Meta Evolutionary Programming-Firefly Algorithm (EMEFA) has been used to ensure the optimum allocation and placement of DG. The study also considers the different types of DG. The aim of the technique is to consider the computational time of the optimization process for DG planning in achieving the minimal total loss. Two test systems have been used as test specimens to achieve the efficacy of the proposed technique. In this study, the techniques proposed were used to establish the DG size and the appropriate place for DG planning. The results for total losses and minimum voltage for the system were recorded from the simulation. The result in this study will be compared with the ranking identification technique to ensure the capability of this technique. The power system planner can adopt the suitable sizes and locations from the obtained result for the planning of utility in term of economic and geographical consideration. -
PublicationGrid integration of multiple PV inverters with reduced number of interfacing transformers— A dedicated controller for elimination of DC current injection( 2023-03-01)
;Adam G.P. ;Williams B.W. ;Rahim N.A.The injection of dc current offset into ac networks may impacted the lifespan of the distribution system equipment including isolation transformers and measurement devices and in serious event may cause equipment's malfunction. This paper intents to eliminate dc current offsets in the output currents using a combinational of proportional-integral (PI) and proportional resonance (PR) controls embedded in one inverter unit. Resultant output currents of this method are sinusoidal and clean from dc offset before entering the point of common coupling. This method gives advantages for transformerless option for group of interfacing inverters in the medium-scale solar farm or in arrangement of inverters restricted in a small locale. Moreover, the use of expensive and high-accuracy measurement sensor nor complex transformer can be omitted, whilst indirectly give positive impact to the operational cost of the farm. The simulation verifications proved the usefulness of the proposed method by introducing varying unknown dc offset levels in the phase currents, and a dedicated dc offset suppressor inverter able to successfully eliminate the dc offset to zero. The validity of the proposed method is demonstrated in simulation using MATLAB/Simulink. -
PublicationComparative Evaluation of Three-Phase Inverter Topologies Based on Voltage Boosting Features( 2023-01-01)
;Yee C.S. ;Hwai L.J. ;Zahari M.Z.A.Voltage source inverter (VSI) is commonly used in industrial due to its stable operation and low cost. However, VSI needs to operate with an extra converter stage which is a DC-DC converter for voltage boosting purposes. In contrast, current source inverter (CSI) inherits voltage boosting features may become an alternative option to VSI. Yet, there were minimal research on CSI that dedicates to the voltage boosting features. This research focuses on comparing the voltage boosting features of CSI and VSI in both open-loop and closed-loop conditions. The performance of VSI and CSI are simulated using MATLAB/Simulink. Under open-loop operation, CSI produces a voltage boosting capability at approximately 55% higher than VSI. Yet, CSI suffers high THD percentage as compared to VSI for the same switching frequency. This high THD shortcoming can be easily resolved by using a simple CL filter. For closed-loop operation, VSI and CSI with voltage-controlled synchronous frame PI control systems are proven to have good reference tracking and harmonic rejection and are suitable to be implemented for household applications or for a standalone system. Interestingly, CSI closed-loop system can achieve a wider range of output due to the voltage boosting capability and provide a better quality of output waveform as compared to VSI. -
PublicationA hybrid multi-objective Evolutionary Programming-Firefly Algorithm for different type of Distributed Generation in distribution system( 2022-12-01)
;Noor Najwa Husnaini Mohammad Husni ;Hussain M.H. ;Musirin I.With the rise in electricity demand, various additional sources of generation, known as Distributed Generation (DG), have been introduced to boost the performance of power systems. A hybrid multi-objective Evolutionary Programming-Firefly Algorithm (MOEPFA) technique is presented in this study for solving multi-objective power system problems which are minimizing total active and reactive power losses and improving voltage profile while considering the cost of energy losses. This MOEPFA is developed by embedding Firefly Algorithm (FA) features into the conventional EP method. The analysis in this study considered DG with 4 different scenarios. Scenario 1 is the base case or without DG, scenario 2 is for DG with injected active power, scenario 3 is for DG injected with reactive power only and scenario 4 is for DG injected with both active and reactive power. The IEEE 69-bus test system is applied to validate the suggested technique.