Now showing 1 - 1 of 1
  • Publication
    Classification of Multiple Visual Field Defects using Deep Learning
    ( 2021-03-01)
    Masyitah Abu
    ;
    ;
    Amir A.
    ;
    ; ;
    Nishizaki H.
    In this work, a custom deep learning method is proposed to develop a detection of visual fields defects which are the markers for serious optic pathway disease. Convolutional Neural Networks (CNN) is a deep learning method that is mostly used in images processing. Therefore, a custom 10 layers of CNN algorithm is built to detect the visual field defect. In this work, 1200 visual field defect images acquired from the Humphrey Field Analyzer 24-2 collected from Google Image have been used to classify 6 types of visual field defect. The defect patterns are including defects at central scotoma, right/left/upper/lower quadratopia, right/left hemianopia, vision tunnel, superior/inferior field defect and normal as baseline. The custom designed CNN is trained to discriminate between defect patterns in visual field images. In the proposed method, a mechanism of pre-processing is included to improve the classification of visual field defects. Then, the 6 visual field defect patterns are detected using a convolutional neural network. The dataset is evaluated using 5-fold cross-validation. The results of this work have shown that the proposed algorithm achieved a high classification rate with 96%. As comparison, traditional machine learning Support Vector Machine (SVM) and Classical Neural Network (NN) is chose and obtained classification rate at 74.54% and 90.72%.
      1