Now showing 1 - 2 of 2
  • Publication
    MOVE Mobility Model in GreedLea Routing Protocol for Internet of Vehicle (IoV) Network
    Internet of Vehicles (IoV) is a broad variety of mobile transmission purposes for file sharing [l]-[5]. There are still debates on the viability of purposes using end to end multi-hop communication, since the significant number of high mobility nodes involved in the networks. The main issue is the efficiency of IoV routing protocols in cities and highways can meet the ideal delay and throughput for such purposes. In particular, it is not usually a challenge to locate a node to hold a message in urban daytime situations, where vehicles are tightly packed. Since fewer number of vehicles are running in highway scenarios and cities at night, and it might not be possible to set up end-to-end roads. In general, each protocol offered a performance evaluation in contradiction of some other protocols, giving considerable importance to a detailed performance evaluation of each protocol type. After such an assessment, it was found that geocast routing would perform best in urban areas. GreedLea routing protocol is develop to overcome the current routing protocol drawback. The development of GreedLea routing protocol involved Greedy Perimeter Stateless Routing (GPSR) and reinforcement learning method in order to deliver better performance compared to current existing routing protocol. Urban environments without obstacles has been simulated using actual maps for example intersection density. In order to measure efficiency, the metrics are: average delivery rate, average delay, average length of path and overhead. From the analysis, it shows that GreedLea offers better performance compared to GPSR for both city and highway scenario. The first section in your paper.
  • Publication
    GPSR Routing Performances Enhancement for VANET networks with Taguchi Optimization Mechanism
    Routing mechanism plays an important role in the performances of Vehicular Ad Hoc Networks (VANET). Hence, various routing mechanisms are proposed to enhance VANET performances, however few researches are dedicated to optimize these routing mechanisms. In this paper an optimization mechanism is proposed to improve the performances of Greedy Perimeter stateless Routing (GPSR) protocol. Design of Experiments is used along with Taguchi Optimization method to fine tune GPSR internal routing parameters against VANET network scenarios. The target of optimization in this work is set to network performances including network throughput, delay and packet delivery ration (PDR). These targets are mathematically combined to form a single optimization target. A simulation experiments are performed to evaluate VANET performances. Obtained results showed that the proposed optimization improves the VANET performances in terms of throughput, PDR and delay. Further real-time integration of Optimization and routing mechanism can improve network performances.