Now showing 1 - 2 of 2
  • Publication
    The effect of particle size on the mechanical properties of Alkali Activated Steel Slag Mortar
    ( 2022)
    Doh Shu Ing
    ;
    Ho Chia Min
    ;
    Xiaofeng Li
    ;
    Ramadhansyah Putra Jaya
    ;
    ;
    Siew Choo Chin
    ;
    Nur Liza Rahim
    ;
    Marcin Nabiałek
    With the rapid development of industry, abundant industrial waste has resulted in escalating environmental issue. Steel slag is the by-product of steel-making and can be used as cementitious materials in construction. However, the low activity of steel slag limits its utilization. Much investigation has been conducted on steel slag, while only a fraction of the investigation focuses on the effect of steel slag particle size on the properties of mortar. The aim of this study is to investigate the effect of steel slag particle size as cement replacement on properties of steel slag mortar activated by sodium sulphate (Na 2 SO 4). In this study, two types of steel slag, classified as fine steel slag (FSS) with particle sizes of 0.075mm and coarse steel slag (CSS) with particle sizes of 0.150 mm, were used for making alkali activated steel slag (AASS) mortar. Flow table test, compressive strength test, flexural strength test and UPV test were carried out by designing and producing AASS mortar cubes of (50 × 50 × 50) mm at 0, 10%, 20% and 30% replacement ratio and at 0.85% addition of Na 2 SO 4. The results show that the AASS mortar with FSS possess a relatively good strength in AASS mortar. AASS mortar with FSS which is relatively finer shows a higher compressive strength than CSS up to 38.0% with replacement 52 DOH SHU ING et al. ratio from 10% to 30%. This study provided the further investigation on the combined influence of replacement ratio and particle size of SS in the properties of fresh and hardened AASS.
  • Publication
    Influence of salinity of mixing water towards physical and mechanical properties of high strength concrete
    ( 2023) ;
    Khai Yen Ng
    ;
    ; ;
    M. Nabiałek
    ;
    K. Muthusamy
    ;
    W.A.W. Jusoh
    ;
    B. Jeż
    ;
    R. Mohamed
    Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.
      10  21