Now showing 1 - 3 of 3
  • Publication
    Experimental Investigation on Thermal Conductivity of Palm Oil and Zinc Oxide PFAE-based Nanofluids
    Vegetable oil (VO) have been constantly researched as an alternative to the conventional mineral oil (MO) in the application of transformer insulation liquid. VO is deemed as a suitable replacement for MO as they are a renewable source, cheaper in price, and have a high thermal conductivity, high flashpoint, and high breakdown voltage value. In addition, the trending interest in nanofluids has made it possible to further improved the insulating properties of VOs. This paper reports the experimental results of thermal conductivity test of Palm oil-based nanofluids and Palm fatty acid ester (PFAE)-based nanofluids. The nanoparticles used in this work is Zinc Oxide (ZnO) <50nm nano powder and the nanofluid (NF) samples are varied by low, medium and high concentrations. The test was conducted at 9 different temperatures from 25°C to 65°C with 5°C gap. The result shows that a low and medium concentration nanofluid has an improvement in thermal conductivity value, up to 42.6% and 59.5% respectively for palm oil-based nanofluid. Meanwhile, the high concentration palm oil-based nanofluid has lower enhancement in thermal conductivity value at certain temperatures. As for PFAE-based nanofluids, the thermal conductivity value has improved by up to 27% and 14.4% for medium and high concentration respectively. Nanofluids with medium concentration of ZnO, has the highest enhancement in insulating and cooling properties for both palm oil and PFAE-based nanofluids. This observation is supported by the kinematic viscosity value of the mentioned nanofluid.
  • Publication
    Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX
    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.
  • Publication
    Topologies of DC-DC converter in solar PV applications
    Solar energy plays an important role in renewable energy generation systems since it is clean, pollution-free sustainable energy as well as the increasing cost-of-electricity which causes high-growth demands amongst utility customers. This paper presents various circuit topologies of DC-DC converters in solar photovoltaic (PV) applications. There are three types of DC-DC converter presented in this paper that can be integrated with solar PV system which are buck, boost and buck-boost converter in various applications. This paper also presents the application on DC-DC converter in solar PV system for maximum power point tracking (MPPT) feature. The advantages and disadvantages of each topology will be discussed further in term of cost, components, efficiency and limitations.