Now showing 1 - 4 of 4
  • Publication
    Potential of new sustainable green geopolymer metal composite (GGMC) material as mould insert for Rapid Tooling (RT) in injection moulding process
    ( 2023)
    Allice Tan Mun Yin
    ;
    ; ;
    Marcin Nabialek
    ;
    Abdellah El-hadj Abdellah
    ;
    Allan Rennie
    ;
    ;
    Aurel Mihail Titu
    The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60–80 MPa (8700–11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mould-making and machining will profit the most.
  • Publication
    Tool wear and surface evaluation in drilling fly ash geopolymer using HSS, HSS-Co, and HSS-TiN cutting tools
    ( 2021) ; ; ;
    Joanna Gondro
    ;
    Paweł Pietrusiewicz
    ;
    Sebastian Garus
    ;
    Tomasz Stachowiak
    ;
    Andrei Victor Sandu
    ;
    ;
    Mehmet Erdi Korkmaz
    ;
    Mohamed Syazwan Osman
    This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.
  • Publication
    Evaluation on the mechanical properties of Ground Granulated Blast Slag (GGBS) and fly ash stabilized soil via geopolymer process
    ( 2021)
    Syafiadi Rizki Abdila
    ;
    ; ; ;
    Małgorzata Rychta
    ;
    Izabela Wnuk
    ;
    Marcin Nabiałek
    ;
    Krzysztof Muskalski
    ;
    ;
    Muhammad Syafwandi
    ;
    Marek Isradi
    This study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers.
  • Publication
    Optimizing of the cementitious composite matrix by addition of steel wool fibers (chopped) based on physical and mechanical analysis
    ( 2021)
    Akrm A Rmdan Amer
    ;
    ; ;
    Ikmal Hakem A Aziz
    ;
    Jerzy J. Wysłocki
    ;
    ;
    Wojciech Sochacki
    ;
    Sebastian Garus
    ;
    Joanna Gondro
    ;
    Hetham A. R. Amer
    The demand for durable, resistant, and high-strength structural material has led to the use of fibers as reinforcing elements. This paper presents an investigation into the inclusion of chopped steel wool fibers (CSWFs) in cement to form a high-flexural strength cementitious composite matrix (CCM). CSWFs were used as the primary reinforcement in CCM at increments of 0.5 wt%, from 0.5–6 wt%, with ratios of cement to sand of 1:1.5 and water to cement of 0.45. The inclusion of CSWFs resulted in an excellent optimization of the physicomechanical properties of the CCM, such as its density (2.302 g/cm3), compressive strength (61.452 MPa), and maximum flexural strength (10.64 MPa), all of which exceeded the performances of other reinforcement elements reported in the literature.