Now showing 1 - 4 of 4
Thumbnail Image
Publication

Ground penetrating radar for buried utilities detection and mapping: a review

2021-12-01 , Hasimah Ali , Ideris N.S.M. , Ahmad Firdaus Ahmad Zaidi , Mohd Shuhanaz Zanar Azalan , Amran T.S.T. , Ahmad M.R. , Rahim N.A. , Shazmin Aniza Abdul Shukor

This paper presents a review on Ground Penetrating Radar (GPR) detection and mapping of buried utilities which have been widely used as non-destructive investigation and efficiently in terms of usage. The reviews cover on experimental design in GPR data collection and survey, pre-processing, extracting hyperbolic feature using image processing and machine learning techniques. Some of the issues and challenges facing by the GPR interpretation particularly in extracting the hyperbolas pattern of underground utilities have also been highlighted.

Thumbnail Image
Publication

A cascade hyperbolic recognition of buried objects using hybrid feature extraction in ground penetrating radar images

2021-08-27 , Hasimah Ali , Ahmad Firdaus Ahmad Zaidi , Wan Khairunizam Wan Ahmad , Mohd Shuhanaz Zanar Azalan , Tengku Amran T.S. , Ahmad M.R. , Mohamed Elshaikh Elobaid Said Ahmed

Ground penetrating radar (GPR) has been acknowledged as effective nondestructive technique for imaging the subsurface. But the process of recognizing hyperbolic pattern of buried objects is subjective and mainly relies upon operator's knowledge and experience. This project proposed a hyperbolic recognition of buried objects using hybrid feature extraction in GPR subsurface mapping. In this framework, a cascade hyperbolic recognition by means of Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) are used as hybrid feature recognizing hyperbolic of buried objects. The rationale for an initial focus on cascade hyperbolic recognition is motivated by unique features exhibits by EMD and DWT behaviour in characterizing the hyperbolic pattern which make them particularly well suited to utilities detection in GPR. A series of experiments has been conducted on hyperbolic pattern based on hybrid features using four different geometrical shapes of cubic, cylindrical disc and spherical. Based on the results obtained, the hybrid features of IMF1+ wavelet transform (cH1) shows promising recognition rate in recognizing the hyperbolic that having different geometrical shapes of buried objects.

Thumbnail Image
Publication

Feature Extraction based on Empirical Mode Decomposition for Shapes Recognition of Buried Objects by Ground Penetrating Radar

2021-06-11 , Hasimah Ali , Mohd Shuhanaz Zanar Azalan , Zaidi A.F.A. , Amran T.S.T. , Ahmad M.R. , Elshaikh M.

Ground penetrating radar (GPR) is one of the promising non-destructive imaging tools investigations for shallow subsurface exploration such as locating and mapping the buried utilities. In practical applications, GPR images could be noisy due to the system noise, the heterogeneity of the medium, and mutual wave interactions thus, it is a complex task to recognizing the hyperbolic signature of buried objects from GPR images. Therefore, this paper aims to develop nonlinear feature extraction technique of using Empirical Mode Decomposition (EMD) in recognizing the four geometrical shapes (cubic, cylindrical, disc and spherical) from GPR images. A pre-processing step of isolating hyperbolic signature from different background was first employed by mean of Region of Interest (ROI). The hyperbolic signature that describes the shapes was extracted using EMD decomposition to obtain a set of significant features. In this framework, the hyperbolic pattern was decomposed of using EMD, to produce a small set of intrinsic mode functions (IMF) via sifting process. The IMF properties of the signature that exhibit the unique pattern was used as potential features to differentiate the geometrical shapes of buried objects. The extracted IMF features were then fed into machine learning classifier namely Support Vector Machines. To evaluate the effectiveness of the proposed method, a set data collection of GPR-images has been acquired. The experimental results show that the recognition rate of using IMF features was achieved 99.12% accuracy in recognizing the shapes of buried objects whose shows the promising result.

Thumbnail Image
Publication

Hyperbola detection of ground penetrating radar using deep learning

2024-02-08 , Zahir N.H.M. , Hasimah Ali , Nasri M.I.S. , Masuan N.A. , Zaidi A.F.A. , Mohd Shuhanaz Zanar Azalan , Amin M.S.M. , Ahmad M.R. , Elshaikh M.

Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location