Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Hyperbola detection of ground penetrating radar using deep learning
 
Options

Hyperbola detection of ground penetrating radar using deep learning

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2024-02-08
Author(s)
Zahir N.H.M.
Hasimah Ali
Universiti Malaysia Perlis
Nasri M.I.S.
Masuan N.A.
Zaidi A.F.A.
Mohd Shuhanaz Zanar Azalan
Universiti Malaysia Perlis
Amin M.S.M.
Ahmad M.R.
Elshaikh M.
DOI
10.1063/5.0194124
Abstract
Ground Penetrating Radar (GPR) is a geophysical method using high resolution electromagnetic used to acquire the information of underground. The electromagnetic (EM) waves produces from the antenna consisting of transmitter and receiver. The waves from the transmitter penetrates into the ground and reflect backs to the surface that receive by the antenna receiver. The antenna can lie within the range of 10MHz to 1000MHz to determine the shallow or deep penetration. Higher value of antenna will result in shallow penetration and otherwise for lower antenna. The process of recognition of buried objects is challenging task especially in the construction area to ensure safety and the quality of civil building. The GPR will display the mapping image on its control unit screen. If there are objects underground have detected, the image will display the hyperbola shape to indicate the target of the object. A vast number of data makes it difficult to classify each and every one of it either the image data is in which classes or categories. If there are many hyperbola present in image also makes it difficult to locate the accurate position. Due to this, deep learning technique by means of ResNet50 has been used in this research for hyperbola recognition in GPR image. A series of experiments has been conducted on the GPR dataset collected at Agency Nuclear Malaysia. Based on the results obtained, the deep learning model successfully learn the image feature. The accuracy of the model classified for this GPR data using ResNet50 gives 90% accuracy. Therefore, the proposed method for image recognition shows the promising results with all the GPR images are correctly recognize. Further, region of interest of hyperbola signature has been represented by a rectangular box indicates the hyperbola location
Funding(s)
Agensi Nuklear Malaysia
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies