Options
Mohd Ridzuan Mohd Jamir
Preferred name
Mohd Ridzuan Mohd Jamir
Official Name
Mohd Ridzuan , Mohd Jamir
Alternative Name
Ridzuan Mohd Jamir, Mohd
M Ridzuan, M. J.
Ridzuan, M. J.M.
Mohd Jamir, Mohd Ridzuan
Jamir, Mohd Ridzuan Mohd
Main Affiliation
Scopus Author ID
36069815000
Researcher ID
H-9343-2012
Now showing
1 - 7 of 7
-
PublicationThe effect of stacking sequence on fatigue behaviour of hybrid pineapple leaf fibre/carbon-fibre-reinforced epoxy composites( 2021)
;Mohamed Thariq Hameed Sultan ;Ain Umaira Md Shah ;Kamarul Arifin AhmadAdi Azriff BasriThis study examined the fatigue behaviour of pineapple leaf fibre/carbon hybrid laminate composites under various stacking sequences. The vacuum infusion technique was used to fabricate the symmetric quasi-isotropic oriented laminates, in which the stacking was varied. The laminate was tested under static and fatigue tensile load according to ASTM D3039-76 and ASTM D3479-96, respectively. Maximum tensile strength and modulus of 119.34 MPa and 6.86 GPa, respectively, were recorded for the laminate with external PALF ply and internal carbon ply oriented at [± 45°2, 0°/90°2]s (PCCP_45090). The fatigue tests showed that PCCP_45090 and CPPC_09045 (with internal PALF ply and external carbon ply oriented at [0°/90°2, ± 45°2]s) exhibited a higher useful life, especially at the high-stress level of the ultimate tensile strength. The normalised stress against the number of cycles showed that the stacking sequences of different ply orientations affected the fatigue behaviour more than the stacking sequences of the material. The laminate stacking sequence significantly affected the hysteresis energy and stiffness evolution. The scanning electron microscopy images showed that the fatigue failure modes included fibre pull-out, fibre breakage, matrix cracking, debonding, and delamination. The study concluded that PCCP_45090 exhibited an outstanding fatigue performance. -
PublicationThe effect of stacking sequence on fatigue behaviour of hybrid pineapple leaf fibre/carbon-fibre-reinforced epoxy composites( 2021)
;Mohamed Thariq Hameed Sultan ;Ain Umaira Md Shah ;Kamarul Arifin AhmadAdi Azriff BasriThis study examined the fatigue behaviour of pineapple leaf fibre/carbon hybrid laminate composites under various stacking sequences. The vacuum infusion technique was used to fabricate the symmetric quasi-isotropic oriented laminates, in which the stacking was varied. The laminate was tested under static and fatigue tensile load according to ASTM D3039-76 and ASTM D3479-96, respectively. Maximum tensile strength and modulus of 119.34 MPa and 6.86 GPa, respectively, were recorded for the laminate with external PALF ply and internal carbon ply oriented at [± 45°2, 0°/90°2]s (PCCP_45090). The fatigue tests showed that PCCP_45090 and CPPC_09045 (with internal PALF ply and external carbon ply oriented at [0°/90°2, ± 45°2]s) exhibited a higher useful life, especially at the high-stress level of the ultimate tensile strength. The normalised stress against the number of cycles showed that the stacking sequences of different ply orientations affected the fatigue behaviour more than the stacking sequences of the material. The laminate stacking sequence significantly affected the hysteresis energy and stiffness evolution. The scanning electron microscopy images showed that the fatigue failure modes included fibre pull-out, fibre breakage, matrix cracking, debonding, and delamination. The study concluded that PCCP_45090 exhibited an outstanding fatigue performance. -
PublicationThe effect of stacking sequence and ply orientation on the mechanical properties of Pineapple Leaf Fibre (PALF)/Carbon hybrid laminate composites( 2021)Mohamed Thariq Hameed SultanIn this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0°, 90°] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
4 40 -
PublicationEffect of pineapple leaf (PALF), napier, and hemp fibres as filler on the scratch resistance of epoxy composites( 2019)
;E.H.D. GanS. SyahrullailThis article presents the effects of pineapple leaf (PALF), napier, and hemp fibres as filler on the scratch resistance of epoxy composites. In particular, it explores the effect of these natural fillers on the horizontal load, coefficient of friction (COF), penetration depth, fracture toughness, scratch hardness, brittleness index and scratch observation. The mixing method using magnetic stirrer was used to produce the natural fibre-filled epoxy composites with different wt%, namely, 5, 7.5, and 10 wt%. The test was performed using a CSM Revetest Xpress, which consisted of a cone of the half-apex angle of 60° ending with a sphere having a tip radius of 200 μm. The indenter scratch distance and speed were 7 mm and 1.5 mm/min, respectively. The results show that the napier fibre-filled epoxy composites have the highest peak load and COF. It was also noted that the napier fibre-filled epoxy composites have the lowest penetration depth for each wt% of filler. Lastly, the fracture toughness (Kc) for the napier fibre-filled epoxy composites with 10 wt% of filler yielded the highest value of 4.33 MPa.m1/2. It can also be seen that using a scanning electron microscope (SEM), the amount of debris increased with higher of wt% of the natural fibre fillers in the composites. Hence it was demonstrated that the napier fibre-filled epoxy composites have higher scratch resistance compared to the PALF and hemp fibre-filled epoxy composites. Keywords: Surface analysis, Fracture toughness, Scratch resistance, PALF, Napier, Hemp fibres.6 11 -
PublicationEffects of ply orientations and stacking sequences on impact response of Pineapple Leaf Fibre (PALF)/Carbon Hybrid Laminate composites( 2022)
;Hassan A. AlshahraniDavid HuiThis study investigated the impact response behaviours of pineapple leaf fibre (PALF)/carbon hybrid laminate composites for different ply orientations and stacking sequences. The laminates were manufactured using a vacuum infusion approach with various stacking sequences and ply orientations classified as symmetric quasi-isotropic, angle-ply symmetric, and cross-ply symmetric. The laminates were analysed using an IMATEK IM10 drop weight impact tester with an increment of 5 J until the samples were perforated. This investigation reveals that the overall impact properties of PALF and carbon as reinforcements were improved by a beneficial hybridised effect. The laminates with an exterior carbon layer can withstand high impact energy levels up to 27.5 J. The laminate with different stacking sequences had a lower energy transfer rate and ruptured at higher impact energy. The laminates with ply orientations of [0°/90°] and [±45°]8 exhibited 10% to 30% better energy absorption than those with ply orientations of [±45°2, 0°/90°2]s and [0°/90°2, ±45°2]s due to energy being readily transferred within the same linear ply orientation. Through visual inspection, delamination was observed to occur at the interfaces of different stacking sequences and ply orientations.12 14 -
PublicationEffects of ply orientations and stacking sequences on impact response of Pineapple Leaf Fibre (PALF)/Carbon hybrid laminate composites( 2022)
;Hassan A. AlshahraniDavid HuiThis study investigated the impact response behaviours of pineapple leaf fibre (PALF)/carbon hybrid laminate composites for different ply orientations and stacking sequences. The laminates were manufactured using a vacuum infusion approach with various stacking sequences and ply orientations classified as symmetric quasi-isotropic, angle-ply symmetric, and cross-ply symmetric. The laminates were analysed using an IMATEK IM10 drop weight impact tester with an increment of 5 J until the samples were perforated. This investigation reveals that the overall impact properties of PALF and carbon as reinforcements were improved by a beneficial hybridised effect. The laminates with an exterior carbon layer can withstand high impact energy levels up to 27.5 J. The laminate with different stacking sequences had a lower energy transfer rate and ruptured at higher impact energy. The laminates with ply orientations of [0°/90°] and [±45°]8 exhibited 10% to 30% better energy absorption than those with ply orientations of [±45°2, 0°/90°2]s and [0°/90°2, ±45°2]s due to energy being readily transferred within the same linear ply orientation. Through visual inspection, delamination was observed to occur at the interfaces of different stacking sequences and ply orientations.6 13 -
PublicationThe effect of stacking sequence and ply orientation on the mechanical properties of Pineapple Leaf Fibre (PALF)/Carbon hybrid laminate composites( 2021)Mohamed Thariq Hameed SultanIn this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0°, 90°] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
3 13