Options
Mohd Riduan Jamalludin
Preferred name
Mohd Riduan Jamalludin
Official Name
Mohd Riduan , Jamalludin
Alternative Name
Jamalludin, M. R.
Riduan Jamalludin, Mohd
Main Affiliation
Scopus Author ID
55778617300
Researcher ID
M-4808-2019
AAU-5306-2020
Now showing
1 - 2 of 2
-
PublicationFabrication, performance evaluation, and optimisation of adsorptive ammonia removal using hollow fibre ceramic membrane: Response surface methodology approach( 2021-03-01)
;Mohd Ridhwan Adam ;Mohd Hafiz Dzarfan Othman ;Siti Hamimah Sheikh Abdul Kadir ;Mohd Hafiz Puteh ;Nik Abdul Hadi Md Nordin ;Mohd Azri Ab Rani ;Azeman Mustafa ;Mukhlis A. RahmanJuhana JaafarThis work aims to optimise the factors that affect the adsorptive removal of ammonia by natural zeolite hollow fibre ceramic membrane (HFCM) in a continuous crossflow system using surface response methodology (RSM). The adsorptive HFCM was first characterised using the scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy prior to the adsorption process. A face-centred central composite design (CCD) was used to statistically visualise the interaction of the factors, namely feed pH, feed concentration, and HFCM dosage, with the response of water permeability and ammonia removal of the HFCM. The optimum conditions for the HFCM performance were feed pH of 7.04, feed concentration of 75.00 mg/L, and HFCM dosage of 0.35 g, with a desirability value of 0.953. The excellent ammonia removal performance (96.5%) reveals that the HFCM possesses great potential to be developed as a synergised system that combines the adsorption and filtration of water. -
PublicationNovel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment( 2020-01-01)
;Hubadillah S.K. ;Othman M.H.D. ;Tai Z.S. ;Yusuf N.K. ;Ahmad AA. ;Rahman M.A. ;Jaafar J. ;Kadir S.H.S.A.Harun Z.Industrial textile wastewater is toxic due to the presence of recalcitrant color pigments and poisonous heavy metals. In this study, the hydroxyapatite (HAp)-based bio-ceramic hollow fiber membranes (h-bio-CHFM) were developed via the combined phase inversion and sintering technique. It was found that the properties of the developed h-bio-CHFMs were greatly affected by the HAp content of the ceramic suspension, and sintering temperature. The h-bio-CHFM with the sintering temperature of 1200 °C exhibited the long rod-shaped HAp particles and the smallest pore size (0.013 μm). High removals of color (99.9%), COD (80.1%), turbidity (99.4%) and conductivity (30.1%) were achieved using the h-bio-CHFM sintered at 1200 °C with stable high flux of 88.3 L/m2h. Remarkably, the h-bio-CHFM sintered in the temperature range of 1000–1200 °C also demonstrated excellent adsorption ability towards heavy metals with 100% removals. The results of this study show the potential of the h-bio-CHFM for the efficient industrial textile wastewater treatment applications.