Options
Mohd Natashah Norizan
Preferred name
Mohd Natashah Norizan
Official Name
Mohd Natashah, Norizan
Alternative Name
Mohd, Natashah Norizan
Norizan, M. N.
Natashah Norizan, Mohd
Natashah, N. Mohd
Main Affiliation
Scopus Author ID
57226822517
Researcher ID
B-1263-2017
Now showing
1 - 2 of 2
-
PublicationGround coffee waste-derived activated carbon a sustainable adsorbent and photocatalyst for effective methylene blue dye degradation( 2024-12)
;Or Yang Jai Xien ;Siti Norsaffirah ZailanThis study focuses on harnessing the potential of ground coffee waste (GCW) as a valuable precursor to produce activated carbon (AC) through pyrolysis. The objective is to develop an eco-friendly adsorbent and photocatalyst for environmental remediation applications. Preceding pyrolysis at 350°C for 3.5 hours, GCW was subjected to activate using hydrochloric acid (HCl) and potassium hydroxide (KOH). The resulting AC was subsequently combined with titanium dioxide (TiO2) photocatalyst powder, resulting in the creation of TiO2-AC composites that functioned both as adsorbent and photocatalyst. The TiO2-AC composites were investigated for their adsorption and photocatalytic capabilities in the degradation of 10 ppm methylene blue dye under sunlight exposure for 240 minutes. Morphological analysis revealed a sponge-like structure for both HCl-activated AC and NaOH-activated AC, with HCl-AC exhibiting more pronounced and uniform pores compared to KOH-AC. Remarkably, GCW demonstrated the highest removal efficiency, effectively removing 97.34% of methylene blue, outperforming HCl-AC (16.89%) and KOH-AC (10.41%). Nonetheless, the AC-TiO2 composites, specifically HCl-AC/TiO2 and KOH-AC/TiO2, also exhibited considerable removal efficiencies of 93.31% and 92.46%, respectively. These findings underscore the promising potential of utilizing GCW-derived activated carbon as an environmentally sustainable solution for organic pollutant treatment and herald its significance in promoting greener approaches to waste utilization and environmental protection. -
PublicationMagnetite (Fe₃O₄)-activated carbon composite from ground coffee waste for the removal of copper ions (Cu²⁺) from solution( 2024-12)
;Siti Norsaffirah Zailan ;Nur Mawaddah JuzainiAissa BouaissiThe influence of the magnetite addition on the adsorption efficiency of activated carbon (AC) synthesized using different activators was investigated. In this work, the activated carbon from ground coffee waste (GCW) was prepared via activation with phosphoric acid (H3PO4) and potassium hydroxide (KOH), followed by carbonization at 500˚C. The magnetite (Fe₃O₄)-activated carbon composites were prepared by mixing the activated carbon with Fe₃O₄ powders. From the X-ray diffraction analysis, both activated carbons produced by H₃PO₄, and KOH are in the form of amorphous structures. Magnetite peaks can be observed from the magnetite-activated carbon composites. KOH-treated activated carbon shows the formation of porous honeycomb-like structures with large pore size (average diameter ±43 𝛍m) compared to H3PO4-treated activated carbon where the smaller, non-uniform pore morphology with the average diameter ±32 𝛍m was formed. The copper ions removal efficiency is the highest for biochar (almost 100%). For treated activated carbon, AC-KOH and MAC-KOH shows the highest adsorption removal efficiency (99.7%) compared to the acid-treated carbon (91.9%). Magnetite itself has good adsorption behaviour (93.6% efficiency) due to its nanocrystalline structure (high surface area) and functional groups.