Now showing 1 - 10 of 23
Thumbnail Image
Publication

Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

2017-09-26 , Raimee N.A. , Mohd Fathullah Ghazli@Ghazali , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd. Hazwan Mohd. Hanid

The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

Thumbnail Image
Publication

Computational Fluid Dynamics Analysis of Varied Cross-Sectional Areas in Sleep Apnea Individuals across Diverse Situations

2024-01-01 , Wan Mohd Faizal Wan Ab Rahim , Khor Chu Yee , Mohamad Suhaimi Shahrin , Muhamad Nur Misbah , Mohd. Hazwan Mohd. Hanid , Masniezam Ahmad , Mohd Haidiezul Jamal Ab Hadi

Obstructive sleep apnea (OSA) is a common medical condition that impacts a significant portion of the population. To better understand this condition, research has been conducted on inhaling and exhaling breathing airflow parameters in patients with obstructive sleep apnea. A steady-state Reynolds-averaged Navier–Stokes (RANS) approach and an SST turbulence model have been utilized to simulate the upper airway airflow. A 3D airway model has been created using advanced software such as the Materialize Interactive Medical Image Control System (MIMICS) and ANSYS. The aim of the research was to fill this gap by conducting a detailed computational fluid dynamics (CFD) analysis to investigate the influence of cross-sectional areas on airflow characteristics during inhale and exhale breathing in OSA patients. The lack of detailed understanding of how the cross-sectional area of the airways affects OSA patients and the airflow dynamics in the upper airway is the primary problem addressed by this research. The simulations revealed that the cross-sectional area of the airway has a notable impact on velocity, Reynolds number, and turbulent kinetic energy (TKE). TKE, which measures turbulence flow in different breathing scenarios among patients, could potentially be utilized to assess the severity of obstructive sleep apnea (OSA). This research found a vital correlation between maximum pharyngeal turbulent kinetic energy (TKE) and cross-sectional areas in OSA patients, with a variance of 29.47%. Reduced cross-sectional area may result in a significant TKE rise of roughly 10.28% during inspiration and 10.18% during expiration.

No Thumbnail Available
Publication

Energy Absorption Characteristics of Thin-Walled Tubes Filled with Rice Husk and Kenaf Fibers

2024-12-02 , Masniezam Ahmad , Khairul Azwan Ismail , Fauziah Che Mat , Mohd. Hazwan Mohd. Hanid , Ahmad Azraai Abd Aziz

This study investigates the energy absorption characteristics of thin-walled tubes filled with rice husk and kenaf fibers when compressed under axial compression. The aim of this study is to evaluate the crashworthiness parameters such as energy absorption (EA), initial peak load (IPL), crush force efficiency (CFE) and specific energy absorption (SEA). Experimental results show that tubes filled with rice husk and kenaf exhibit significant improvements in overall energy absorption compared to empty tubes. However, while both fillers enhanced EA, the SEA values were lower than predicted. Thus, it is suggested that further optimization, such as adjusting filler density or exploring hybrid filler combinations, could improve crashworthiness. This study highlights the potential for rice husk and kenaf fibers as sustainable filler options for lightweight, impact-resistant designs in automotive, aerospace, and other engineering applications, with opportunities for improvement in future research.

Thumbnail Image
Publication

Warpage optimisation on the moulded part with straight drilled and conformal cooling channels using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches

2021 , Mohd. Hazwan Mohd. Hanid , Shayfull Zamree Abd. Rahim , Joanna Gondro , Safian Sharif , Mohd. Mustafa Al Bakri Abdullah , Azlan Mohd Zain , Abdellah El-hadj Abdellah , Mohd. Nasir Mat Saad , Jerzy J. Wysłocki , Marcin Nabiałek

It is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould.

No Thumbnail Available
Publication

Energy absorption characteristics of corrugated grooves thin-walled structure inspired by nautilus shell biological geometry

2025-01 , Mohd. Hazwan Mohd. Hanid , Safian Sharif , Masniezam Ahmad , Mohd Azlan Suhaimi , Khairul Azwan Ismail , Muhammad Syamil Zakaria

Crash box is a vital component for a vehicle in absorbing kinetic energy in the event of a road collision. The thin-walled structure is emerging as a favorable geometry in designing the crash box. This article investigates the energy absorption performance of the corrugated nautilus shell bio-inspired thin-walled structure made of AA6061-T6 aluminum alloy. This structure’s performance was evaluated using finite element analysis (FEA) under quasi-static and dynamic loading conditions in an axial direction, then validated by a quasi-static compression experimental test, which showed satisfactory agreement. The results show that the corrugated nautilus shell bio-inspired thin-walled structure integrated with corrugated grooves reduced peak crushing force (PCF) by 17.9% and increased specific energy absorption (SEA) by 1.3% and crush force efficiency (CFE) by 17.6% compared to non-corrugated design. It can be concluded that the proposed nautilus shell bio-inspired thin-walled structure integrated with corrugated grooves has the potential to replace conventional hollow square designs in vehicle crash box applications.

Thumbnail Image
Publication

Full Factorial Design Exploration Approach for Multi-Objective Optimization on the (FDM) 3D Printed Part

2020-09-21 , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid , Soon Lee W. , Gunalan , Fatin Najihah Nur , Izzul Fadhli

In the manufacturing industry, especially in automotive, quality, precision and productivity on the part that produces is crucial. 3D Printing technology offers a significant advantage to the manufacturer because its ability to produce complex geometry and low-cost investment risk compared with injection moulding. However, there are several issues of using this technology in mass scale and of the issue is dimensional accuracy. In this study, the application of optimisation approach which is Full Factorial Design (FFD) approach which has employed on 3D Printed bottom housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer in order to minimise shrinkage on 3D printed parts. Based on the optimisation work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.

Thumbnail Image
Publication

Characteristics on air flow distribution via spiral blade distributor in a swirling fluidized bed

2020 , Muhammad Lutfi Abd. Latif , Mohd Al-Hafiz Mohd Nawi , Mohd. Hazwan Mohd. Hanid , Mohd Razman Amin , Ku Mohammad Yazid Ku Ibrahim , Hazizul Hussein

Swirling Fluidized Bed (SFB) is a new method which is very useful in drying process especially in mineral processing. By designing the annular blade distributor inclined, the gas will pass through the distributor, then certainly achieve suitable performance in term of fluidization. Numerical simulation such as Computational Fluid Dynamics (CFD) has been widely used to investigate the parameters that influence the system itself. The current study focused on the spiral blade distributor with various pitch length (60mm, 80mm, and 100mm), and various horizontal inclination angle (0°, 12° and 15°). The CFD is used to compute and btain the velocity distribution data, as well as tangential velocity. The uniformity of tangential velocity distribution are the crucial investigation as this will be used to determine the optimum SFB systems. Effect of low blades inclination angle (0°) and low pitch length (60mm) has showed the most significant finding in this study.

Thumbnail Image
Publication

Optimisation of warpage on thin shell plastic part using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

2017-09-26 , Asyirah B.N. , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd Fathullah Ghazli@Ghazali , Mohd. Hazwan Mohd. Hanid

In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.

Thumbnail Image
Publication

Effects of Cutouts on Energy Absorption Characteristics of Thin-walled Tube Impacted under Dynamic Loading

2022-12 , M. H. Zikri , M. Ahmad , Muhamad Nur Misbah , Wan Mohd Faizal Wan Nik , Mohd Al-Hafiz Mohd Nawi , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid

A thin-walled tube is an energy absorber device that is commonly used in automotive and locomotive applications. The function of this element is to convert the kinetic energy into other forms of energy during a collision that can minimize injuries to the passengers. Therefore, various studies have been reported previously to improve the thin-walled structure to decrease the damage and provide protection for the vehicle and occupant. This study aims to determine the effects of the cutout on the thin-walled tube when impacted under dynamic axial loading. The effects of sizes, shapes, locations, and the number of cutouts on the energy absorption characteristics have been analyzed by using the validated finite element model. The result indicates that a circular tube with a square cutout shape, larger cutout sizes, and near the top-end of the tube has more energy absorption characteristics. Furthermore, the results of energy absorption (EA), crush force efficiency (CFE), and specific energy absorption (SEA) are highest when applying four cutouts on the surface of the thin-walled tube. Research information provided in this study will serve as a guide in designing the cutout thin-walled tube for crashworthiness enhancements in the future.

Thumbnail Image
Publication

FEA: Automatic air freshener dispenser

2021-05-03 , Mohd. Hazwan Mohd. Hanid , Muhamad Farizuan Rosli , Rahman W. , Radhwan Hussin , Ahmad S.A.S. , Khairunnisa Norli , Ndrieniza Anak Saini , Nur Afifah Mazlan , Nuruljannah Omar

This research focused on the redesign the main body of automatic air freshener dispenser. Automatic air freshener dispenser used for spraying fragrance automatically according to the setting provided. This type of air freshener no need to spray manually, labor saving and more convenient. This automatically air freshener dispenser will automatically spray the fragrance into the whole room space to purify air and remove smelly odor. Other than that, the objectives of this mini project are to redesign the main body of the automatic air freshener dispenser. The design of the automatic air freshener dispenser is using CAD software which is CATIA and then transfer to Finite Element Analysis (FEA) to analyses the capabilities of part design. At the end of this paper, this research will give understanding about design using CATIA Software and do analysis that improved the redesign body of the automatic air freshener dispenser.