Now showing 1 - 10 of 23
Thumbnail Image
Publication

Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

2017-09-26 , Raimee N.A. , Mohd Fathullah Ghazli@Ghazali , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd. Hazwan Mohd. Hanid

The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

Thumbnail Image
Publication

Hybrid mold: comparative study of rapid and hard tooling for injection molding application using Metal Epoxy Composite (MEC)

2021 , Radhwan Hussin , Safian Sharif , Marcin Nabiałek , Shayfull Zamree Abd. Rahim , Mohd Tanwyn Mohd Khushairi , Mohd Azlan Suhaimi , Mohd. Mustafa Al Bakri Abdullah , Mohd. Hazwan Mohd. Hanid , Jerzy J. Wysłocki , Katarzyna Błoch

The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.

Thumbnail Image
Publication

Modification of the design of circular thin-walled tubes to enhance dynamic energy absorption characteristics: experimental and finite element analysis

2020 , Masniezam Ahmad , Khairul Azwan Ismail , Mohd. Hazwan Mohd. Hanid , Fauziah Che Mat , A M Roslan

A thin-walled tube is an energy absorber device that functions to dissipate kinetic energy into another form of energy during impact. The design of thin-walled tubes is a significant factor which affects to the energy absorption characteristics. This paper provides a comparative study between the original thin-walled tube designs and several modified tube designs that have been proposed. The main objective is to improve the energy absorption characteristics, such as energy absorption capacity, initial peak load, specific energy absorption (SEA) and crush force efficiency (CFE). Throughout this research, aluminium alloy AA6061-T6 has been used as the material for all tubes. For comparison, all of the tubes are developed with a circular shape with the same diameter, thickness and length. In addition, they are also impacted at the same kinetic energy under dynamic axial loading. Validated LS-DYNA finite element (FE) models have been used to simulate the impact of the thin-walled tubes. Compared to the original tube design, the modified tubes have improved energy absorption characteristics. A conical tube with a flat end cap was identified as the best performing tube among the modified tubes because it had the lowest initial peak load, a moderate energy absorption capacity and an excellent CFE and SEA. The findings from this study can be used as a guidance in designing thin-walled structure.

Thumbnail Image
Publication

Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

2017-09-26 , Miza A.T.N.A. , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd Fathullah Ghazli@Ghazali , Mohd. Hazwan Mohd. Hanid

In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

No Thumbnail Available
Publication

Energy absorption characteristics of corrugated grooves thin-walled structure inspired by nautilus shell biological geometry

2025-01 , Mohd. Hazwan Mohd. Hanid , Safian Sharif , Masniezam Ahmad , Mohd Azlan Suhaimi , Khairul Azwan Ismail , Muhammad Syamil Zakaria

Crash box is a vital component for a vehicle in absorbing kinetic energy in the event of a road collision. The thin-walled structure is emerging as a favorable geometry in designing the crash box. This article investigates the energy absorption performance of the corrugated nautilus shell bio-inspired thin-walled structure made of AA6061-T6 aluminum alloy. This structure’s performance was evaluated using finite element analysis (FEA) under quasi-static and dynamic loading conditions in an axial direction, then validated by a quasi-static compression experimental test, which showed satisfactory agreement. The results show that the corrugated nautilus shell bio-inspired thin-walled structure integrated with corrugated grooves reduced peak crushing force (PCF) by 17.9% and increased specific energy absorption (SEA) by 1.3% and crush force efficiency (CFE) by 17.6% compared to non-corrugated design. It can be concluded that the proposed nautilus shell bio-inspired thin-walled structure integrated with corrugated grooves has the potential to replace conventional hollow square designs in vehicle crash box applications.

Thumbnail Image
Publication

Shrinkage optimisation on the 3D printed part using Full Factorial Design (FFD) optimisation approach

2020-12-18 , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid , Lee W.S. , Gunalan , Najihah N.F. , Fadhli I.

Quality and productivity are both important in 3D printing products and processes. However, it is quite challenging to control the quality and productivity of each product due to several parameters involved in this additive manufacturing process. Most of the parameter settings depend on trial and error techniques which consume a lot of time and material waste. Therefore, in this study, the application of optimization approach which is Full Factorial Design (FFD) approach which has been employed on 3D printed housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer to minimize shrinkage on the 3D printed parts. Based on the optimization work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.

Thumbnail Image
Publication

Shrinkage optimisation on the 3D printed part using Full Factorial Design (FFD) optimisation approach

2020 , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid , Woon Soon Lee , Gunalan , Najihah, Nur Fatin , Izzul Fadhli

Quality and productivity are both important in 3D printing products and processes. However, it is quite challenging to control the quality and productivity of each product due to several parameters involved in this additive manufacturing process. Most of the parameter settings depend on trial and error techniques which consume a lot of time and material waste. Therefore, in this study, the application of optimization approach which is Full Factorial Design (FFD) approach which has been employed on 3D printed housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer to minimize shrinkage on the 3D printed parts. Based on the optimization work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.

Thumbnail Image
Publication

Determination of moisture content on kenaf via fluidization systems

2020-03-25 , Zainuddin H.H.M. , Mohd Al-Hafiz Mohd Nawi , Kasim M.S. , Mohd. Hazwan Mohd. Hanid , Wan Azani Wan Mustafa , Nik Noriman Zulkepli , Dahham O.S.

Malaysia is a one of tropical forest country in the Southeast Asia and they have a great potential of green agriculture source to be used as a renewable energy. One of this source is a Kenaf that is consist of a core and bast fibers. In this study, biomass which is Kenaf plant was dried using Sherwood M501 air fluid bed dryer. Air fluid bed dryer is one of the fluidization drying process that have potential to be widely used. The current properties in this material used contain the high value of water when produced pellet. Therefore, a study was conducted to determine the characteristics and the percentage of Kenaf focused on moisture loss of Kenaf sample via fluidization drying process. The results of found that during fluidization process the best condition that reduce most of the moisture content of sample is the second condition that applied 4.0 m/s velocity (50% of fan speed), 46°C temperature. Effect of the used of suitable amount of air velocity and temperature would attributed to the physical characteristics change and moisture content value that should be obtained.

Thumbnail Image
Publication

Warpage optimisation on front panel housing using straight drilled and conformal cooling channels in injection moulding process

2018 , Mohd. Hazwan Mohd. Hanid

Nowadays, there are various optimisation methods that have been explored by researchers to determine the appropriate setting of processing parameters in the injection moulding process. Based on previous researches, the use of optimisation works has improved the quality of the moulded part produced. Apart from quality, the productivity in the injection moulding process also plays an important role. Therefore, some researchers and manufacturers have introduced the application of conformal cooling channels in injection process which have been proven to improve the quality and productivity of the moulded part due to better uniformity of temperature distribution in the mould as compared to the conventional straight drilled cooling channels. However, the application of optimisation techniques to determine an appropriate setting of processing parameters in previous researches were mainly focused on the conventional straight drilled cooling channels, whereas in conformal cooling channels is still lacking due to the difficulties in mould fabrication. In this study, the application of optimisation technique to improve the warpage on the front panel housing using the conventional straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channels was explored. Simulation studies using Autodesk Moldflow Insight (AMI) 2013 software were conducted to obtain the recommended processing parameters for both types of channels. Then, by selecting cooling time, coolant temperature, packing pressure and melt temperature as the variable parameters, Design of Experiment (DOE) has been constructed using the face-centered, Central Composite Design (CCD) approach. Response Surface Methodology (RSM) was performed to develop mathematical models to employing Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches in order to determine the appropriate setting of the processing parameters to optimise the warpage defect. Results from experimental works showed that, the performance of MGSS conformal cooling channels is remarkably improved in terms of quality and productivity compared to the straight drilled cooling channels before and after optimisation. GA offers the lowest warpage value, followed by RSM and then GSO for both types of channels. The warpage on the front panel housing was improved by 32.5% (from 0.375 mm to 0.253 mm) and 22.9% (from 0.205 mm to 0.158 mm) using straight drilled and MGSS conformal cooling channels respectively after optimisation using GA, compared to the recommended setting suggested from simulation studies. Next, it was followed by an RSM approach with the improvement of 30.7% and 22% using straight drilled and MGSS conformal cooling channels respectively as compared to the recommended setting suggested from simulation studies. Lastly, the result using GSO approach showed an improvement of 18.7% and 7.3% using straight drilled and MGSS conformal cooling channels respectively when compared to the recommended setting suggested from simulation studies. Therefore, it can be suggested that, this research provides beneficial scientific knowledge and alternative solution for plastic injection moulding industries to enhance the quality of the moulded parts produced using optimisation techniques.

Thumbnail Image
Publication

Distributor optimization: analysis via design of experiment (DOE) on perforated plate distributor in fluidized bed

2020 , Ku Mohammad Yazid Ku Ibrahim , Mohd Al-Hafiz Mohd Nawi , Mohd. Hazwan Mohd. Hanid , Nurul Fatin Najihah Abd Samat , Hazizul Hussein , Muhammad Lutfi Abd. Latif

Generally in industry, the fluidization process involves with plate distributor and used a type of perforated plate distributor as their fluidization process. In terms of observation, this type of distributor has used a large amount of energy consumption. Currently, the new design of perforated plate that involved; (i) number of slotted, (ii) slotted width, (iii) slotted length and (iv) thickness distributor has been produced and tested via Computational Fluid Dynamics (CFD). Then, the results from the simulation in each perforated plate are been extracted and analyze by using a Design of Experiment (DOE) method through full factorial design (FFD). Results from the statistical analysis have shown a significant parameter on performance of the fluidization that was assessed by pressure drop values and velocity distributions values. The results from this statistical analysis showed a significant parameter on mean tangential velocity and pressure drop. In conclusion, by using the optimization method the new design of distributor would propose less energy consumption in future fluidization application.