Now showing 1 - 10 of 22
Thumbnail Image
Publication

Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

2017-09-26 , Raimee N.A. , Mohd Fathullah Ghazli@Ghazali , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd. Hazwan Mohd. Hanid

The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

Thumbnail Image
Publication

Pollutant emission in diesel engine

2020-01-01 , Mohd Al-Hafiz Mohd Nawi , Mohd. Hazwan Mohd. Hanid , Wan Azani Wan Mustafa , Kasim M.S. , Raja Abdullah R.I.

As for the diesel engine, it is well known as one of the largest contributors to environmental pollution, which cause by exhaust emission. Therefore, due to the energy constraint, the rising cost of raw petroleum and environmental change with the expanding request for vitality preservation and environmental protection further enhancement in fuel adaptability and emission reduction in a diesel engine are direly required. The outflows framed are indigent upon the engine configuration, power yield and working burden. The complete ignition of fuel prompts real diminishments in the development of fumes discharges. Complete on combustion will leads a significant mechanical power for the vehicle, which is perfect on the air-fuel mixture. With a specific end goal to diminish NOx and PM arrangement it is important to comprehend the components of its development.

Thumbnail Image
Publication

Distributor optimization: analysis via design of experiment (DOE) on perforated plate distributor in fluidized bed

2020 , Ku Mohammad Yazid Ku Ibrahim , Mohd Al-Hafiz Mohd Nawi , Mohd. Hazwan Mohd. Hanid , Nurul Fatin Najihah Abd Samat , Hazizul Hussein , Muhammad Lutfi Abd. Latif

Generally in industry, the fluidization process involves with plate distributor and used a type of perforated plate distributor as their fluidization process. In terms of observation, this type of distributor has used a large amount of energy consumption. Currently, the new design of perforated plate that involved; (i) number of slotted, (ii) slotted width, (iii) slotted length and (iv) thickness distributor has been produced and tested via Computational Fluid Dynamics (CFD). Then, the results from the simulation in each perforated plate are been extracted and analyze by using a Design of Experiment (DOE) method through full factorial design (FFD). Results from the statistical analysis have shown a significant parameter on performance of the fluidization that was assessed by pressure drop values and velocity distributions values. The results from this statistical analysis showed a significant parameter on mean tangential velocity and pressure drop. In conclusion, by using the optimization method the new design of distributor would propose less energy consumption in future fluidization application.

Thumbnail Image
Publication

Analysis of torchlight using engineering analysis tools

2021-05-03 , Mohd. Hazwan Mohd. Hanid , Muhamad Farizuan Rosli , Wan Abdul Rahman Assyahid Wan Ibrahim , Radhwan Hussin , Ahmad S.A.S. , Ting Hua Jui , Nur Ainin Faissal , Nurafzarini Mohd Rusdi , Nor Syahirah Mat Piah

The objective of this paper to improve the design of the torchlight when holding the torchlight and to increase the durability of the torchlight against water by using the float materials. The torchlight also has been analysed using Design for Manufacturing Assembly (DFMA), Failure Modes and Effect Analysis (FMEA), and Sustainability Analysis in order to provide better product.

Thumbnail Image
Publication

Modification of the design of circular thin-walled tubes to enhance dynamic energy absorption characteristics: experimental and finite element analysis

2020 , Masniezam Ahmad , Khairul Azwan Ismail , Mohd. Hazwan Mohd. Hanid , Fauziah Che Mat , A M Roslan

A thin-walled tube is an energy absorber device that functions to dissipate kinetic energy into another form of energy during impact. The design of thin-walled tubes is a significant factor which affects to the energy absorption characteristics. This paper provides a comparative study between the original thin-walled tube designs and several modified tube designs that have been proposed. The main objective is to improve the energy absorption characteristics, such as energy absorption capacity, initial peak load, specific energy absorption (SEA) and crush force efficiency (CFE). Throughout this research, aluminium alloy AA6061-T6 has been used as the material for all tubes. For comparison, all of the tubes are developed with a circular shape with the same diameter, thickness and length. In addition, they are also impacted at the same kinetic energy under dynamic axial loading. Validated LS-DYNA finite element (FE) models have been used to simulate the impact of the thin-walled tubes. Compared to the original tube design, the modified tubes have improved energy absorption characteristics. A conical tube with a flat end cap was identified as the best performing tube among the modified tubes because it had the lowest initial peak load, a moderate energy absorption capacity and an excellent CFE and SEA. The findings from this study can be used as a guidance in designing thin-walled structure.

Thumbnail Image
Publication

Shrinkage optimisation on the 3D printed part using Full Factorial Design (FFD) optimisation approach

2020-12-18 , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid , Lee W.S. , Gunalan , Najihah N.F. , Fadhli I.

Quality and productivity are both important in 3D printing products and processes. However, it is quite challenging to control the quality and productivity of each product due to several parameters involved in this additive manufacturing process. Most of the parameter settings depend on trial and error techniques which consume a lot of time and material waste. Therefore, in this study, the application of optimization approach which is Full Factorial Design (FFD) approach which has been employed on 3D printed housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer to minimize shrinkage on the 3D printed parts. Based on the optimization work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.

Thumbnail Image
Publication

Warpage optimisation on the moulded part with straight drilled and conformal cooling channels using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches

2021 , Mohd. Hazwan Mohd. Hanid , Shayfull Zamree Abd. Rahim , Joanna Gondro , Safian Sharif , Mohd. Mustafa Al Bakri Abdullah , Azlan Mohd Zain , Abdellah El-hadj Abdellah , Mohd. Nasir Mat Saad , Jerzy J. Wysłocki , Marcin Nabiałek

It is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould.

Thumbnail Image
Publication

Full Factorial Design Exploration Approach for Multi-Objective Optimization on the (FDM) 3D Printed Part

2020-09-21 , Mohd Haidiezul Jamal Ab Hadi , Mohd. Hazwan Mohd. Hanid , Soon Lee W. , Gunalan , Fatin Najihah Nur , Izzul Fadhli

In the manufacturing industry, especially in automotive, quality, precision and productivity on the part that produces is crucial. 3D Printing technology offers a significant advantage to the manufacturer because its ability to produce complex geometry and low-cost investment risk compared with injection moulding. However, there are several issues of using this technology in mass scale and of the issue is dimensional accuracy. In this study, the application of optimisation approach which is Full Factorial Design (FFD) approach which has employed on 3D Printed bottom housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer in order to minimise shrinkage on 3D printed parts. Based on the optimisation work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.

Thumbnail Image
Publication

Hybrid mold: comparative study of rapid and hard tooling for injection molding application using Metal Epoxy Composite (MEC)

2021 , Radhwan Hussin , Safian Sharif , Marcin Nabiałek , Shayfull Zamree Abd. Rahim , Mohd Tanwyn Mohd Khushairi , Mohd Azlan Suhaimi , Mohd. Mustafa Al Bakri Abdullah , Mohd. Hazwan Mohd. Hanid , Jerzy J. Wysłocki , Katarzyna Błoch

The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.

Thumbnail Image
Publication

Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

2017-09-26 , Miza A.T.N.A. , Shayfull Zamree Abd. Rahim , Mohd. Nasir Mat Saad , Mohd Fathullah Ghazli@Ghazali , Mohd. Hazwan Mohd. Hanid

In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.