Options
Heah Cheng Yong
Preferred name
Heah Cheng Yong
Official Name
Heah, Cheng Yong
Alternative Name
Yong, Heah Cheng
Yong, H. C.
Heah, Cheng Yong
Heah, C. Y.
Cheng-Yong, Heah
Cheng Yong, Heah
Main Affiliation
Scopus Author ID
54402789500
Researcher ID
S-7139-2019
Now showing
1 - 5 of 5
-
PublicationImprovements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates( 2022-06-01)
;Ng Yong-Sing ;Pakawanit P. ;Vizureanu P. ;Khalid M.S. ;Ng Hui-Teng ;Hanh Yong-Jie ;Nabiałek M. ;Pietrusiewicz P. ;Garus S. ;Sochacki W.Śliwa A.This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300◦C, 600◦C, 900◦C, 1000◦C and 1100◦C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000◦C as compared to FAS geopolymers (24.1 MPa at 1100◦C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900◦C, and 4.0 factor for FAB2 at 1000◦C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100◦C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.1 -
PublicationPreparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation( 2022-06-01)
;Ng Hui-Teng ;Rojviriya C. ;Razi H.M. ;Garus S. ;Nabiałek M. ;Sochacki W. ;Abidin I.M.Z. ;Ng Yong-Sing ;Śliwa A.Sandu A.V.This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.1 -
PublicationPreparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation( 2022-06-01)
;Ng Hui Teng ;Rojviriya C. ;Razi H.M. ;Garus S. ;Nabiałek M. ;Sochacki W. ;Abidin I.M.Z. ;Ng Yong Sing ;Śliwa A.Sandu A.V.This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.1 -
PublicationThe Suitability of Photocatalyst Precursor Materials in Geopolymer Coating Applications: A Review( 2022-09-01)
;Vizureanu P. ;Bras A. ;Imjai T. ;Sandu A.V.Today, the building and construction sector demands environmentally friendly and sustainable protective coatings using inorganic coating materials for safe, non-hazardous, and great performance. Many researchers have been working on sustainable solutions to protect concrete and metal infrastructures against corrosion and surface deterioration with the intention of introducing green alternatives to conventional coatings. This article presents a review of developments of geopolymer pastes doped with different types of photocatalyst precursors including factors affecting geopolymer properties for enhancing coating with photocatalytic performance. Photodegradation using geopolymer photocatalyst has great potential for resolving harmless substances and removing pollutants when energized with ultraviolet (UV) light. Although geopolymer is a potentially new material with great properties, there has been less research focusing on the development of this coating. This study demonstrated that geopolymer binders are ideal precursor support materials for the synthesis of photocatalytic materials, with a significant potential for optimizing their distinctive properties.2 -
PublicationImprovements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates( 2022-06-01)
;Ng Yong-Sing ;Pakawanit P. ;Vizureanu P. ;Khalid M.S. ;Ng Hui-Teng ;Yong-Jie H. ;Nabiałek M. ;Pietrusiewicz P. ;Garus S. ;Sochacki W.Śliwa A.This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300◦C, 600◦C, 900◦C, 1000◦C and 1100◦C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000◦C as compared to FAS geopolymers (24.1 MPa at 1100◦C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900◦C, and 4.0 factor for FAB2 at 1000◦C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100◦C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.1