Options
Hasnizah Aris
Preferred name
Hasnizah Aris
Official Name
Aris, Hasnizah
Alternative Name
Aris, H.
Aris, Hasnizah
Main Affiliation
Scopus Author ID
54784138200
Researcher ID
EJW-8531-2022
Now showing
1 - 2 of 2
-
PublicationAnalysis of different piezoelectric materials on the film bulk acoustic wave resonator( 2023-12)
;M. S. MispanN. Aiman SyahmiThe performance of film bulk acoustic wave resonators (FBAR) is greatly dependent on the choice of piezoelectric materials. Different piezoelectric materials have distinct properties that can impact the performance of FBAR. Hence, this work presents the analysis of three different piezoelectric materials which are aluminum nitride (AlN), scandium aluminum nitride (ScAlN) and zinc oxide (ZnO) on the performance of FBARs working at resonance frequencies of 6 GHz until 10 GHz. The one-dimensional (1-D) modelling is implemented to characterize the effects of these materials on the quality (Q) factor, electromechanical coupling coefficient (k2eff) and bandwidth (BW). It is determined that employing ScAlN in FBAR results in the highest Q factor, ranges from 628 to 1047 while maintaining a relatively compact area (25 μm × 25 μm) and thickness (430 nm to 720 nm). However, ScAlN yields the narrowest BW, measuring 0.11 GHz at 6 GHz, as opposed to AlN and ZnO, which exhibit broader bandwidths of 0.16 GHz and 0.23 GHz, respectively. -
PublicationDesign and simulation of micro-electro-mechanical systems (MEMS) capacitive pressure sensor for thermal runaway detection in the electric vehicle( 2023-12)
;H. M. M HajiziA. A. AzizRecent advancement of vehicle technologies has resulted in development of replacing conventional Internal combustion engine (ICE) to Electric Vehicle (EV) mostly powered by Lithium-ion batteries (LIB). These batteries contain massive amount of energy confined in a very small space. Thermal runaway occurs when the batteries and its circuits start to heat up anomaly. Thermal runaway can cause failures that can lead to battery ignition, resulting in explosions and imminent threats to life and property. This research focused on MEMS capacitance pressure sensor, using three distinct square slotted diaphragm designs: clamped-square, four-slotted-square, and eight-slotted-square diaphragms. The investigation commenced with an evaluation of diaphragm performance, and subsequently, the diaphragm was integrated into the structure of the MEMS capacitive pressure sensor and subjected to simulation. Varied pressure levels ranging from 0.1 to 0.35 MPa were applied to both the diaphragm and the pressure sensor. The outcomes revealed that the eight-slotted-square diaphragm yielded the most substantial displacement, registering at 5.507 μm. It also exhibited the highest Mises stress of 644.67 MPa, and recorded the highest mechanical sensitivity at 15.7545 (10-12/Pa). The clamped-square design, despite its slotted area, yielded the highest capacitance value among the three designs for the pressure sensor.3 2