Options
Hasliza A Rahim @ Samsuddin
Preferred name
Hasliza A Rahim @ Samsuddin
Official Name
A Rahim @ Samsuddin, Hasliza
Alternative Name
A. Rahim, Hasliza
Rahim, Hasliza A.
Rahim Samsuddin, H. A.
Rahim, Hasliza Abdul
Rahim, Hazliza A.
Rahim, H. A.
Rahim, H.
Hasliza,
Rahim H, Abd
RahimAtSamusuddin, Hasliza A.
A Rahim, Hasliza
Rahim At Samsuddin, Hasliza A.
ARahim, H.
Rahim Samsuddin, A. Hasliza
Rahim At Samsuddin, H. A.
Rahim, Hasliza Abd
Rahim, Hasliza
Rahim At Shamsuddin, H. A.
Main Affiliation
Scopus Author ID
57202496362
Researcher ID
ABE-3328-2020
Now showing
1 - 2 of 2
-
PublicationReconfigurable pattern patch antenna for mid-band 5G: A review( 2022-01-01)
;Isa S.R. ;Nebhen J. ;Kamarudin M.R. ;Abbasi Q.H.Soh Ping JackNew requirements in communication technologies make it imperative to rehash conventional features such as reconfigurable antennas to adapt with the future adaptability advancements. This paper presents a comprehensive review of reconfigurable antennas, specifically in terms of radiation patterns for adaptation in the upcoming Fifth Generation (5G) New Radio frequency bands. They represent the key of antenna technology for materializing a high rate transmission, increased spectral and energy efficiency, reduced interference, and improved the beam steering and beam shaping, thereby land a great promise for planar antennas to boost the mid-band 5G. This review begins with an overview of the underlying principals in reconfiguring radiation patterns, followed by the presentations of the implemented innovative antenna topologies to suit particular advanced features. The various adaptation techniques of radiation pattern reconfigurable planar antennas and the understanding of its antenna design approaches has been investigated for its radiation pattern enhancement. A variety of design configurations have also been critically studied for their compatibilities to be operated in the mid-band communication systems. The review provides new insights on pattern reconfigurable antenna where such antennas are categorized as beam steering antenna and beam shaping antennas where the operation modes and purposes are clearly investigated. The review also revealed that for mid-band 5G communication, the commonly used electronic switching such as PIN diodes have sufficient isolation loss to provide the required beam performance. -
PublicationA negative index nonagonal csrr metamaterial-based compact flexible planar monopole antenna for ultrawideband applications using viscose-wool felt( 2021-08-02)
;Kabir Hossain ;Abdelghany M.A. ;Soh Ping JackAl-Bawri S.S.In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular-and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312λ0 × 0.312λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal–polymer adhesion. A naturally available polymer, wool, and a human-made poly-mer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.