Options
Hafiza Shukor
Preferred name
Hafiza Shukor
Official Name
Hafiza, Shukor
Alternative Name
Hafiza, S.
Shukor, H.
Main Affiliation
Scopus Author ID
56248038900
Researcher ID
AAK-7519-2020
Now showing
1 - 2 of 2
-
PublicationMixture of Sludge and Chicken Manure in Membrane-Less Microbial Fuel Cell for Simultaneous Waste Treatment and Energy Recovery(MDPI, 2022-07-01)
;Malik N.N.A. ;Sabri M.N.I.M. ;Tajarudin H.A. ;Shoparwe N.F. ; ;Makhtar M.M.Z. ;Abbas S.Z. ;Yong Y.C.Rafatullah M.In addition to disposal issues, the abundance of sludge and chicken manure has been a rising issue in Malaysia. Membrane-less microbial fuel cell (ML-MFC) technology can be considered as one of the potential solutions to the issues of disposal and electricity generation. However, there is still a lack of information on the performance of an ML-MFC powered by sludge and chicken manure. Hence, with this project, we studied the performance of an ML-MFC supplemented with sludge and chicken manure, and its operating parameters were optimized using response surface methodology (RSM) through central composite design (CCD). The optimum operating parameters were determined to be 35 °C, 75% moisture content, and an electrode distance of 3 cm. Correspondingly, the highest power density, COD removal efficiency, and biomass acquired through this study were 47.2064 mW/m2, 98.0636%, and 19.6730 mg/L, respectively. The obtained COD values for dewatered sludge and chicken manure were 708 mg/L and 571 mg/L, respectively. COD values were utilized as a standard value for the substrate degradation by Bacillus subtilis in the ML-MFC. Through proximate analyses conducted by elemental analysis and atomic absorption spectrometry (AAS), the composition of carbon and magnesium for sludge and chicken manure was23.75% and 34.20% and 78.1575 mg/L and 71.6098 mg/L, respectively. The proposed optimal RSM parameters were assessed and validated to determine the ML-MFC operating parameters to be optimized by RSM (CCD).2 -
PublicationThe Effect of Different Pretreatment of Chicken Manure for Electricity Generation in Membrane-Less Microbial Fuel Cell(MDPI, 2022-08-01)
;Mohd Azmi N. ;Mohd Sabri M.N.I. ;Tajarudin H.A. ;Shoparwe N.F. ;Makhtar M.M.Z. ; ;Alam M. ;Siddiqui M.R.Rafatullah M.The need for energy resources is growing all the time, which means that more fossil fuels are needed to provide them. People prefer to consume chicken as a source of protein, and this creates an abundance of waste. Thus, microbial fuel cells represent a new technological approach with the potential to generate electricity through the action of electrogenic bacteria toward chicken manure, while reducing the abundance of chicken manure. This study investigated the effect of different pretreatment (thermal, alkaline, and sonication pretreatment) of chicken manure to improve the performance of a membrane-less microbial fuel cell (ML-MFC). Statistical response surface methodology (RSM) through a central composite design (CCD) under a quadratic model was conducted for optimization of the ML-MFC performance focusing on the COD removal efficiency (R2 = 0.8917), biomass (R2 = 0.9101), and power density response (R2 = 0.8794). The study demonstrated that the highest COD removal (80.68%), biomass (7.8539 mg/L), and power density (220 mW/m2) were obtained when the pretreatment conditions were 140 °C, 20 kHz, and pH 10. The polarization curve of the best condition of ML-MFC was plotted to classify the behavior of the ML-MFC. The kinetic growth of Bacillus subtillis (BS) showed that, in treated chicken manure, the specific growth rate µ = 0.20 h−1 and doubling time Td = 3.43 h, whereas, in untreated chicken manure, µ = 0.11 h−1 and Td = 6.08.3 14