Options
Azwan Iskandar Azmi
Preferred name
Azwan Iskandar Azmi
Official Name
Azwan Iskandar, Azmi
Alternative Name
Iskandar Azmi, Azwan
Azmi, Azwan Iskandar
Azmi, Azwan I
Main Affiliation
Scopus Author ID
57202737293
Researcher ID
G-7831-2012
Now showing
1 - 3 of 3
-
PublicationA study of energy consumption in turning process using lubrication of nanoparticles enhanced coconut oil (NECO)( 2017-10-29)Musa N.A.Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.
-
PublicationThermophysical Properties of Molybdenum Disulfide (MoS2) and Aluminium Oxide (Al2O3) in Bio-based Coconut Oil Hybrid Nanolubricant for Cleaner Metalworking Cutting Fluid Applications( 2023-06-01)
;Faudzi S.M.Sowi S.A.Green metalworking fluids have increasingly gained pivotal relevance as environmentally compatible lubricant with equivalent performance since conventional lubricant poses significant threat. This study performs experimental and theoretical discovery on the new approach to metalworking fluid; a bio-based coconut oil nanolubricant with hybrid nanoparticles of Al2O3/MoS2 regarding the thermophysical properties. The colloid was produced by suspending Al2O3 and MoS2 nanoparticles in coconut-based oil at different volumetric ratios of 1:1, 1:2, and 2:1 but equal volumetric concentrations of 0.3 vol%. The thermal conductivity of bio-based lubricants increased up to 4.3% with the addition of hybrid nanoparticles which was ascertained using KD2 Pro thermal analyzer. A contact angle goniometer was used to obtain the water drop profile and the maximum wettability of bio-based hybrid nanolubricant was obtained at 27.76° (Al2O3:MoS2 (1:1)) which indicates that incorporating both nanoparticles into the base system improved lubricant spreadability. The kinematic viscosity was evaluated through the viscometer and hybrid nanofluid possessed a remarkable increase in viscosity index of at least 49.6% (Al2O3:MoS2 (2:1)) among other samples. The stability test revealed that the nanolubricant (Al2O3:MoS2 (1:1)) was more stable than others. The experimental outcomes showed that the ratio of hybrid nanoparticles in base fluid has a significant role in enhancing thermophysical properties.1 -
PublicationRoles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys( 2020-04-01)
;Ali M.A.M.The adverse effects of mineral oil-based metal cutting fluid on environmental sustainability have led to increased industrial concerns. Alternatively, biodegradable lubricants such as vegetable oil has a more positive impact with equivalent performance, but insufficient research on their benefits demands further exploration. This work features extensive experimental investigations on machining of Inconel 718 using novel formulations of coconut bio-based oil with enhanced nanoparticles and coco-amido-propyl-betaine. Bio-based with 0.8 wt% of Al2O3 managed to minimise the rapid growth of tool wear and prolong the tool life by 40.17%. Conversely, bio-based with 0.5 wt% of Al2O3 yielded lower values of cutting force (64.32 N), spindle power (2070 kW), specific cutting energy (6.55 W/mm3), and surface roughness (0.29 μm). The outstanding performance of bio-based nanolubricants contributed to superior machinability efficiency and eco-friendly machining environments.1