Options
Anis Atikah Ahmad
Preferred name
Anis Atikah Ahmad
Official Name
Anis Atikah, Ahmad
Alternative Name
Ahmad, Anis Atikah
Ahmad, Anis A.
Main Affiliation
Scopus Author ID
56900415200
Researcher ID
P-6794-2018
Now showing
1 - 2 of 2
-
PublicationAdsorption of basic green 4 onto gasified Glyricidia sepium woodchip based activated carbon: optimization, characterization, batch and column study(Scientific Scholar, 2020)
;Azam Taufik Mohd Din ;Nasehir Khan EM YahayaMohd Azmier AhmadThe abundance of gasification char residues which contributed to solid waste management problem is one of the major concerns in biomass gasification industry. This study focuses on synthesizing gasified Glyricidia sepium woodchip based activated carbon (GGSWAC) for the removal of basic green 4 (BG4) dye, evaluating the GGSWAC physicochemical properties and assessing the BG4 adsorption performance in batch and fixed-bed column systems. The optimal conditions of GGSWAC synthesis were at radiation power, time, and impregnation ratio (IR) of 616 W, 1 min and 1.93 g/g, respectively. The surface area (SBET) and total pore volume (TPV) of GGSWAC were 633.30 m2/g and 0.34 cm3/g, respectively. The Fritz–Schlünder best fitted to the experimental data at all temperatures in the isothermal studies, indicating a monolayer adsorption. The kinetic study showed that BG4 adsorption followed Avrami kinetic model. Based on thermodynamic parameters, the adsorption of BG4 dye onto GGSWAC was an endothermic and spontaneous process. In continuous operation, the Thomas and Yoon–Nelson models successfully predicted BG4 adsorption onto GGSWAC. The low production cost of 0.54 USD/kg showed that GGSWAC is economically feasible for commercialization. -
PublicationHoneycomb-like porous-activated carbon derived from gasification waste for malachite green adsorption: equilibrium, kinetic, thermodynamic and fixed-bed column analysis(Elsevier, 2020)
;Mohd Azmier Ahmad ;Nasehir Khan E.M. Yahaya ;Azam Taufik Mohd DinIn this study, the preparation conditions for the gasification waste-based activated carbon (GWAC) were optimized with malachite green (MG) dye removal and GWAC yield as responses. The adsorption equilibrium, kinetic behavior, and thermodynamics properties were also ana-lyzed. The optimum conditions for synthesizing GWAC were found at a radiation power, time, and impregnation ratios of 616 W, 1 min, and 1.06 g g–1, respectively, which resulted in an 89.98% yield of GWAC and 99.01% MG removal. This sample shows the surface area and total pore volume of 351.92 m2 g–1 and 0.22 cm3, respectively. For the isotherm study, the Fritz–Schlünder model fitted the adsorption data very well with an R2 value of 0.9919–0.9932. The results of the kinetic study showed that the MG adsorption followed a pseudo-first-order kinetic model (R2 = 0.9625–0.9871). The film diffusion was found to be the rate-limiting step of MG adsorption. The adsorption of the MG dye onto GWAC was an endothermic and spontaneous process with ΔH of 9.183 kJ mol–1. In continuous mode, Thomas and Yoon–Nelson models successfully predicted the MG adsorption on the GWAC. GWAC demonstrates its commercial feasibility based on a low production cost of 0.23 USD kg–1.3 1