Now showing 1 - 3 of 3
  • Publication
    Piezoelectric Array Configuration Technique into Enhance Power Catchment for Sound Energy Harvester System
    The objective of this study is to explore the harvest maximum output changes occurs in piezoelectric transducer when connected in different configuration to produce highest electricity consumption and generate sound energy harvesting system. Acoustic energy is a type of environmental energy source that can be extracted and converted into electrical energy for small-scale energy applications. In this study, the corresponding load resistance for single piezoelectric transducer is 4.5 k$\Omega$, together with a constant vibration source at a frequency of 68 Hz and a 1-g acceleration. The performance of output voltage and power of piezoelectric are evaluated and the optimum output is measured by depending on the connection of the piezoelectric transducer arrangement into series, parallel and series, and parallel which stimulated using Proteus software. The experiment result presented that, when have single piezo, 5 piezo connected in series, and 5 piezo connected in parallel, the output powers are 1.664 mW, 1.671mW and 7.676 mW, respectively. During the combination series and parallel connections, the output power of 3S1P piezo increases to 5.05mW. In a parallel configuration, the output voltage that produced is much higher than a piezoelectric transducer arrangement connected in series connection. The piezoelectric transducer that connected in parallel configurations increases its voltage output from 2.83 V to 13.05 V with the same polarity. The arrangement of piezoelectric transducer in parallel configuration is affordable, with its higher production of a higher power output compared to the arrangement of piezoelectric transducer in series connection. Whereas in terms of power output, the maximum power remains constant in the range of 1.665 to 1.671 mW when three transducers are in series configuration connection with the same polarity. In conclusion, the proper implementation of the piezoelectric array configuration is needed in order to operate the minimum energy for low load devices and promise to accomplish generated optimum power output in harvester system.
  • Publication
    Review of Active Circuit and Passive Circuit Techniques to Improve the Performance of Highly Efficient Energy Harvesting Systems
    In piezoelectric energy harvesting systems, energy harvesting circuits are the interface between piezoelectric devices and electrical loads. The conventional view of this interface is based on the concept of impedance matching. In fact, in the power supply circuit can also apply as an electrical boundary conditions, such as voltage and charge, to piezoelectric devices for each energy conversion cycle. The major drawback of piezoelectric power harvesting have low-power relationships in systems within (in the range of μW to mW), then system also have significantly reduced any potential losses in circuits that make up the EH system, whereas other condition into careful selection of circuits and components can enhanced the energy harvesting performance and electricity consumption. In the study of energy harvesting systems, it is an energy harvesting system approach that using active and passive electronic circuit to control voltage and or charge on piezoelectric devices as proposed and review to mechanical inputs for optimized energy conversion. Several factors in the practical limitation of active and passive energy consumption, due to device limitations and the power efficiency of electronic circuits, will be introduced and have played an important role into to enhance optimum and increase efficiency of energy harvesting system.
      1
  • Publication
    Development of Highly Efficient Hybrid Kinetic-Solar Energy Harvesting System
    The development of sustainable and efficient energy harvesting systems has become critical in meeting global energy demands. Hence, the goal is to combine the kinetic energy created via footsteps alongside solar energy to maximize energy conversion and develop a sustainable power source. The research entails designing and optimizing the hybrid system, while selecting appropriate materials, and implementing advanced power management techniques for effective energy utilization. Therefore, in order to improve the efficiency of energy harvesting via the system, further research on voltage input for solar panels and piezo buzzer efficiency arrangements on slabs were conducted. Whereby, the tile cells generate electricity when someone walks across it. However, this energy output needs to be regulated using a voltage multiplier and an alternating current into direct current (AC-DC) converter. To accomplish this, an experiment on the outcomes for output parameter with stand-alone photovoltaic (PV) harvesting system in 6 days, piezoelectric (PZ) harvesting system with students weighing 60kg and 70kg in 14 steps and a power hybrid harvesting system was carried out. Overall, the findings of this study indicate that the proposed method is functional and can be verified by the system, with an average output of 9.46 V and 126.6 mA produced. Also, this study demonstrates the significant potential of hybrid kinetic-solar energy harvesting system in improving energy sustainability and promoting self-sufficient power generation for a variety of applications, including remote sensing, wireless sensor networks, and internet of things (IoT) devices, through experimental evaluations and simulations.
      1