The development of sustainable and efficient energy harvesting systems has become critical in meeting global energy demands. Hence, the goal is to combine the kinetic energy created via footsteps alongside solar energy to maximize energy conversion and develop a sustainable power source. The research entails designing and optimizing the hybrid system, while selecting appropriate materials, and implementing advanced power management techniques for effective energy utilization. Therefore, in order to improve the efficiency of energy harvesting via the system, further research on voltage input for solar panels and piezo buzzer efficiency arrangements on slabs were conducted. Whereby, the tile cells generate electricity when someone walks across it. However, this energy output needs to be regulated using a voltage multiplier and an alternating current into direct current (AC-DC) converter. To accomplish this, an experiment on the outcomes for output parameter with stand-alone photovoltaic (PV) harvesting system in 6 days, piezoelectric (PZ) harvesting system with students weighing 60kg and 70kg in 14 steps and a power hybrid harvesting system was carried out. Overall, the findings of this study indicate that the proposed method is functional and can be verified by the system, with an average output of 9.46 V and 126.6 mA produced. Also, this study demonstrates the significant potential of hybrid kinetic-solar energy harvesting system in improving energy sustainability and promoting self-sufficient power generation for a variety of applications, including remote sensing, wireless sensor networks, and internet of things (IoT) devices, through experimental evaluations and simulations.