Now showing 1 - 6 of 6
No Thumbnail Available
Publication

Building Stronger Biomass : How Particle Size Affects the Physical and Mechanical Properties of Khaya senegalensis Fuel Pellets

2025-06-10 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed

Biomass has gained significant attention as a renewable energy source due to its potential to reduce dependency on fossil fuels and lower carbon emissions. Among various biomass-derived fuels, pelletized biomass offers enhanced energy density, improved combustion efficiency, and ease of handling and storage. Khaya senegalensis, a fast-growing tree that thrives in suboptimal conditions, requires regular pruning, leading to significant biomass waste. This study examines the influence of feedstock particle size on the mechanical properties of Khaya senegalensis fuel pellets. Biomass trimmings from Khaya tree branches were collected, processed into wood chips, and ground into five particle sizes (0.1, 0.3, 0.5, 1, and 2 mm) before pelletization. The pellets were produced under constant moisture content, pressure, temperature, and binder percentage. A one-factor-at-a-time (OFAT) approach was employed, with each process repeated three times to ensure consistency. The mechanical properties analyzed include unit density, durability, axial compressive strength, and diametral compressive strength. Experimental data are analyzed using analysis of variance (ANOVA) to examine correlations between feedstock particle sizes and mechanical properties. This study establishes that particle size plays a crucial role in determining the physical and mechanical properties of Khaya senegalensis wood pellets. The results indicate that finer particles (0.15 mm) contribute to higher unit density and durability, whereas coarser particles (1.00 mm) enhance compressive strength.

Thumbnail Image
Publication

Optimization of fuel pellet parameter from oil palm fronds by using Response Surface Methodology (RSM)

2023-06 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed , Nadiah Farzana Jamaludin , Adli Azimi Abdul Rahman , Mohd Riduan Jamalludin

The oil palm tree, which had been producing a plentiful supply of oil palm fronds, had simply been left to rot on the ground. As biomass is a loose substance, pelletization was undertaken so that it could be transported and stored with ease. High-quality pellet production was studied to maximize oil palm frond use. Therefore, the primary goal of this study was to determine the impact of particle size and moisture content on fuel pellet quality. The response surface approach was utilized in this study to optimize the oil palm fronds pellet particle size and the moisture content on the durability, unit density, and calorific value. The particle sizes analyzed were 0.15 mm, 0.500 mm, and 1.00 mm, while the moisture content was 5%, 10.50%, and 16%. The pellets were manufactured using a hydraulic single pellet press, and their calorific value, unit density, and durability were evaluated using a bomb calorimeter, a density formula, and a sieve shaker, respectively. The optimization yielded the maximum desirability (0.5026) for particles with a 16% moisture content and a 0.500 mm particle size. The condition is ideal when the value of desirability is closest to 1.00. It may be concluded that the particle size and moisture content of oil palm fronds affect the durability, unit density, and calorific value of oil palm fronds pellet.

Thumbnail Image
Publication

Biomass fuel characteristics of Malaysian Khaya Senegalensis wood-derived energy pellets: effects of densification at varied processing temperatures

2024 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed

This study addresses the effects of densification at varied pelletization temperatures on the novel Malaysian Khaya senegalensis wood-derived pellets biomass fuel characteristics. The lack of comprehensive understanding regarding the biomass fuel characteristics of this species prompted the research. By addressing this knowledge gap, this study explores the impact of temperature variations on key fuel properties, contributing to the optimization of sustainable biomass fuel production in manufacturing and materials processing. Khaya senegalensis wood, grown and harvested in Malaysia, was pelletized at different temperatures to analyze the calorific value, volatile matter content, ash content, fixed carbon, bulk density, and moisture contents of the pellets. The experimental data revealed a significant relationship between temperature and these fuel properties. Pelletizing at 75 °C produced the highest calorific value of 19.47 MJ/kg and the maximum fixed carbon content of 10.04%. A low ash level of 4.26% was achieved via pelletizing at 75 °C. According to the results, 75 °C produced the best thermophysical properties. These findings provide valuable understanding of how pelletization temperature influences fuel pellet thermophysical properties, a critical aspect in optimizing fuel pellet production, storage, advancing renewable energy resource utilization, and, finally, promoting a cleaner and more sustainable energy future.

No Thumbnail Available
Publication

Cracking the Code : Process Parameter Effects on Khaya senegalensis Energy Pellet Moisture Content

2023-12 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed

The production of energy pellets from biomass sources holds immense potential for sustainable renewable energy generation. This study investigates the influence of key process parameters on the moisture content of energy pellets derived from Khaya senegalensis, a promising biomass feedstock in Malaysia. With a focus on unlocking the relationship between process variables and pellet moisture, a systematic experimental approach was adopted. The objective of this study is to investigate the effects of raw material moisture, feedstock particle size, compression pressure, and pelletization temperature on the manufactured biomass energy pellet's moisture content. By employing a comprehensive design of experiments and statistical analysis, the nuanced effects of these parameters are revealed on the moisture content of Khaya senegalensis energy pellets. The results illuminate the complex interplay between these process variables and the final moisture characteristics of the pellets. Understanding how these parameters impact moisture content is crucial for optimizing pellet quality, combustion efficiency, and storage stability. The study found a quadratic relationship between particle size, compression pressure, and pelletization temperature, indicating that larger particle sizes correlate with higher moisture content. Excessive pressure led to elevated levels while increasing temperature showed a decreasing trend. This research contributes valuable insights that advance the knowledge frontier of biomass pelletization, paving the way for enhanced utilization of Khaya senegalensis as a renewable energy resource.

Thumbnail Image
Publication

Cracking the code: process parameter effects on Khaya senegalensis energy pellet moisture content

2023-12 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed

The production of energy pellets from biomass sources holds immense potential for sustainable renewable energy generation. This study investigates the influence of key process parameters on the moisture content of energy pellets derived from Khaya senegalensis, a promising biomass feedstock in Malaysia. With a focus on unlocking the relationship between process variables and pellet moisture, a systematic experimental approach was adopted. The objective of this study is to investigate the effects of raw material moisture, feedstock particle size, compression pressure, and pelletization temperature on the manufactured biomass energy pellet's moisture content. By employing a comprehensive design of experiments and statistical analysis, the nuanced effects of these parameters are revealed on the moisture content of Khaya senegalensis energy pellets. The results illuminate the complex interplay between these process variables and the final moisture characteristics of the pellets. Understanding how these parameters impact moisture content is crucial for optimizing pellet quality, combustion efficiency, and storage stability. The study found a quadratic relationship between particle size, compression pressure, and pelletization temperature, indicating that larger particle sizes correlate with higher moisture content. Excessive pressure led to elevated levels while increasing temperature showed a decreasing trend. This research contributes valuable insights that advance the knowledge frontier of biomass pelletization, paving the way for enhanced utilization of Khaya senegalensis as a renewable energy resource.

No Thumbnail Available
Publication

Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets

2023 , Ras Izzati Ismail , Khor Chu Yee , Alina Rahayu Mohamed

Biomass pellets are one of the most crucial feedstocks for bioenergy production on a global scale due to their numerous advantages over raw biomass resources. Pellets provide improved energy density, bulk density, moisture content, and homogeneity thereby reducing storage, handling, and transportation costs. To produce high-quality solid fuel, it is necessary to comprehend the properties of wood fuel. This study explored the potential of Khaya senegalensis (khaya) as a dedicated energy crop (DEC) for the production of green energy. It thrives in less-than-ideal conditions and grows rapidly. The low durability of energy pellets raises the risk of dust and fire during handling and storage. In addition, the potential for fines and dust formation is strongly correlated with the mechanical strength of materials. Due to this necessity, the current study examines the effects of pelletization factors, including temperature and pressure, on pellet properties, particularly on its mechanical properties. The durability and compressive strength of pellets were determined using a sieve shaker and a universal testing machine, respectively. The highest mechanical durability was observed at 3 tons of pressure and 75 degrees Celsius, each with a value of 99.6%. The maximum axial compressive strength was measured at 57.53 MPa under 5 tons of pressure. When pelletized at 125 °C, the axial compressive strength increased by 13.8037% to 66.06 MPa compared to the strength obtained at 5 tons of pressure. Pelletizing Khaya feedstocks at 4 tons of pressure, on the other hand, produced a slightly lower diametral compressive strength of 7.08 MPa compared to 7.59 MPa at 125 °C. The experimental results revealed that the aforementioned factors significantly affect the mechanical properties of pellets. The elucidation of wood biomass, solid fuel qualities and pelletization parameters of this potential energy crop may facilitate the production of high-quality pellets from Khaya senegalensis wood to meet the increasing local and worldwide energy demands.