Options
Ong Hui Lin
Preferred name
Ong Hui Lin
Official Name
Ong, Hui Lin
Alternative Name
Ong, Huilin
Ong, H. L.
Lin, Ong Hui
Lin, O. H.
Lin Ong, Hui
Main Affiliation
Scopus Author ID
57189322712
Researcher ID
F-5201-2010
Now showing
1 - 2 of 2
-
PublicationRevealing the water resistance, thermal and biodegradation properties of Citrus aurantifolia crosslinked Tapioca Starch/Nanocellulose bionanocompositesMoisture absorption, thermal and biodegradation properties of nanocellulose (NC) reinforced bionanocomposite tapioca starch (TS) films crosslinked with Citrus aurantifolia or lime juice (LJ) were investigated for food packaging applications. The films were synthesized by solvent casting using different amounts of nanocellulose and crosslinkers: lime juice and a commercial citric acid (CA). Nanocellulose as reinforcing filler was obtained from oil palm empty fruit bunches through acid hydrolysis. Crystallinity of all TS bionanocomposites was determined using X-ray diffractometry. TS bionanocomposites interaction with water was studied by means of moisture absorption, moisture content and swelling. Flory-Huggin model was used to measure the crosslinked density of crosslinked TS bionanocomposites which indicated successful crosslinking using LJ and CA for TS. The crystallinity of TS film increased from 43.5% for neat TS to 51.6% for TS film with inclusion of NC. LJ-crosslinked TS film with 1 wt% of NC (based on starch content) had the lowest moisture absorption and swelling ratio. TS bionanocomposites with LJ had better thermal and biodegradation properties compared to commercial CA-crosslinked TS biocomposites, which can be a potential food packaging material among the tested bionanocomposites.
-
PublicationInvestigation the optimum performance of the surface-mounted PMSM under different magnetization patterns( 2020-01-07)
;Akmar Mohd-Shafri, Syauqina ;Ishak D. ;Jun Tan C.This paper investigates the influence of different magnetization patterns on the performances of the surface-mounted permanent magnet synchronous machines (SMPMSMs). Three magnetization patterns are employed, which are radial, parallel, and ideal Halbach magnetizations. These magnetization patterns are applied to 9-slot/10-pole and 15-slot/4-pole permanent magnet (PM) machines. The PM machines are designed and simulated by using Opera 2D finite element. The performances of three PM motors, such as airgap flux density, phase back-EMF, and cogging torque, are evaluated under the influence of different magnetization patterns. The total harmonic distortion of phase back-EMF (THDv) for the motors are investigated. The PM motors with ideal Halbach magnetization provide the lowest cogging torque and the lowest total harmonic distortion of phase back-EMF. Besides that, the optimum setting of the magnet pole-arc can reduce the total harmonic distortion of phase back-EMF and achieve lower cogging torque. The optimum magnet pole-arc produced by radial magnetization in 9-slot/10-pole motor is 24.8 mech., with cogging torque of 0.45 Nm, and THDv of 2.69 %. Meanwhile, the optimum magnet pole-arc produced by parallel magnetization in 9-slot/10-pole motor is 26.0 mech., with cogging torque of 0.41 Nm, and THDv of 2.00 %.1 17