Options
Nooraizedfiza Zainon
No Thumbnail Available
Preferred name
Nooraizedfiza Zainon
Official Name
Nooraizedfiza, Zainon
Alternative Name
Nooraizedfiza, Z.
Zainon, Nooraizedfiza
Main Affiliation
Scopus Author ID
55322624900
Researcher ID
DKB-9248-2022
Now showing
1 - 3 of 3
-
PublicationDoping content dependencies on the structure modification and bandgap broadening of Al induced sol-gel derived ZnO nanostructures( 2021-10)
;Wan Abd Rahman Assyahid Wan IbrahimThis paper reports the Al doping content dependence on structure modification and band gap wid-ening of sol-gel synthesised Al-doped ZnO thin films. The precursor, solvent and stabiliser used to prepare ZnO solution were Zinc Acetate Dihydrate, 2-propanol and ethanolamine, respectively. Mo-larity fractions of 0, 4, 6 and 8% of Al (NO3)2 as dopant source was incorporated into ZnO host system and prepared by individual buffer solutions. The prepared sols were subsequently deposited onto ITO glass substrates, and the resultant thin films were characterised. XRD patterns exhibit the polycrys-talline nature of pure and doped ZnO films, with preferred orientations correspond to (1 0 0), (0 0 2) and (1 0 1) planes. Lattice shrinking is indicated by the decrease lattice constant c due to axial com-pression. Peaks shifting towards higher angle are observed implying a structural modification over doped thin films that affects the optical properties, which agrees with the lattice shrinking. The ab-sorption edge has an obvious blueshift to the shorter wavelength with increased dopant content. The thin films’ energy bands were procured by Tauc’s linear extrapolation and was found to be broaden-ing from 3.32 eV to 3.34 eV in 6% Al-doped ZnO. There exists a significant correlation between the applied doping level and the extend of variation of structural properties and ultimately, lattice im-perfection. Doping of smaller-atom-sized Al into ZnO concedes with the Burstein-Moss principles. 6% Al doping imposes the highest peak shift and ultimately has the highest impact on lattice parameter and energy band. -
PublicationImage Processing Approach for Detection and Quantification of Corrosion Behaviour of AZ91D Magnesium Alloy( 2022-01-01)
;Zuraila Iberahim ;Alias J.The AZ91D magnesium alloy is known for its high strength-to-weight ratio, excellent machinability and good castability making it an ideal material to be used in automotive components fabrication. But due to its weak corrosion resistance towards the environment, identifying and quantifying AZ91D magnesium alloy corrosion behaviour before any manufacturing processes can be a huge impact and may provide useful information to the manufacturers. The limitation of conventional corrosion detection and quantification methods also justify the further needs of image processing approach in this study. This paper study the feasibility of an image processing approach using the automatic thresholding method and various manual thresholding level in order to identify the corrosion attack on the AZ91D magnesium alloy. This method converts the original colour image to grayscale image and then convert it to binary image. Then through image processing approach, the image will be segmented to non-corroded and corroded area and labelled as 0 (black) and 1 (white) and make it easier to analyze. The white dots (1) distribution was then presented in percentage to shows that the pitting corrosion on the surface can be identified better by using the Otsu’s method of automatic thresholding. The resulting image of various thresholding shows which thresholding values successfully portray similarity of the original corrosion image. Thus, this increases the reliability of AZ91D magnesium alloy corrosion detection and quantification via image processing approach.1 -
PublicationDoping content dependencies on the structure modification and bandgap broadening of Al induced sol-gel derived ZnO nanostructures(Universiti Malaysia Perlis (UniMAP), 2021-10)This paper reports the Al doping content dependence on structure modification and band gap wid-ening of sol-gel synthesised Al-doped ZnO thin films. The precursor, solvent and stabiliser used to prepare ZnO solution were Zinc Acetate Dihydrate, 2-propanol and ethanolamine, respectively. Mo-larity fractions of 0, 4, 6 and 8% of Al (NO3)2 as dopant source was incorporated into ZnO host system and prepared by individual buffer solutions. The prepared sols were subsequently deposited onto ITO glass substrates, and the resultant thin films were characterised. XRD patterns exhibit the polycrys-talline nature of pure and doped ZnO films, with preferred orientations correspond to (1 0 0), (0 0 2) and (1 0 1) planes. Lattice shrinking is indicated by the decrease lattice constant c due to axial com-pression. Peaks shifting towards higher angle are observed implying a structural modification over doped thin films that affects the optical properties, which agrees with the lattice shrinking. The ab-sorption edge has an obvious blueshift to the shorter wavelength with increased dopant content. The thin films’ energy bands were procured by Tauc’s linear extrapolation and was found to be broaden-ing from 3.32 eV to 3.34 eV in 6% Al-doped ZnO. There exists a significant correlation between the applied doping level and the extend of variation of structural properties and ultimately, lattice im-perfection. Doping of smaller-atom-sized Al into ZnO concedes with the Burstein-Moss principles. 6% Al doping imposes the highest peak shift and ultimately has the highest impact on lattice parameter and energy band.