Options
Nor Ashikin Ahmad
Preferred name
Nor Ashikin Ahmad
Official Name
Nor Ashikin, Ahmad
Alternative Name
Ahmad, Nor Ashikin
Ahmad, N. A. A.
Main Affiliation
Scopus Author ID
57224566483
Researcher ID
CBN-7775-2022
Now showing
1 - 2 of 2
-
PublicationCarbon footprint assessment from purchased electricity consumption and campus commute in Universiti Malaysia Perlis (UniMAP): Pre- and during COVID-19 pandemic( 2022-01-01)
;Nor Atiqa BaharomBoboc M.Most institutions and organizations nowadays have been taking responsibility in reducing their carbon footprint (CF) to curtail the global warming impact to at least 20–25% reduction by 2030. Universities and higher learning institutions are starting to invest in becoming greener and carbon-free. Current COVID19 communicable disease has swayed the routine and concurrently influenced regular trends of greenhouse gases (GHG) emissions throughout the world. This study explored the possible GHG emissions (calculated as CO2e) from internal campus commute and purchased electricity consumption from the year 2018–2020 at Universiti Malaysia Perlis main campus to analyze the influence of COVID19 pandemic on its CO2e emission. The average amount of CO2e emitted during pre-COVID19 period (n = 26) was 1,518.8 tCO2e/year while during COVID19 period, it was 1,071.5 tCO2e/year (n = 10), marked as 29.5% reduction. Due to completeness and quality of data for contracted bus (monitoring period of years 2018, 2019 and 2020 as 12 months, 12 months, and 2 months, respectively), year 2019 was determined as the appropriate baseline year for setting the CO2e reduction target due to COVID19 pandemic precedented year. In comparison to pre-COVID19 pandemic, almost 95%/year and 7%/year reductions of CO2e were recorded for both Scope 1 and Scope 2, respectively. Comparing Scope 1 and 2, it was obviously observed that the purchased electricity consumption (Scope 2) was the predominant contributor to GHG emission at UniMAP campus by 78% despite of current pandemic influence and its reduction was indistinct (7%/year reduction). Thus, the reduction target in future should be venturing in energy savings and energy auditing in addition to carbon offsetting.1 -
PublicationOptimization of Nickel Precipitation and Leaching Process from Simulated Industrial Waste: A Study on pH, Contact Time, and Sulfuric Acid Concentration( 2024-01-01)
;Zulkurnai N.Z.Zuki F.M.The presence of nickel in industrial waste has emerged as a significant environmental concern, predominantly attributed to the plating industry. The significant objective of this study is to optimize the precipitation and leaching method to extract valuable nickel from the waste material. The high concentration of nickel found in the waste makes it a potentially valuable resource. To explore its potential extraction, the precipitation and leaching processes were optimized using a simulated Watts bath solution which is widely employed in the industry. This study focuses on examining the influence of pH, contact time, and sulfuric acid concentration on the extraction of nickel concentration during the precipitation and leaching processes. To develop a prediction model for the process, three models were taken into consideration: quadratic, linear, and 2F1. The quadratic model exhibited the greatest adjusted R2 value, suggesting a superior level of fit in comparison with the linear and 2F1 models. The predicted R2 value of 0.8169 exhibits a satisfactory level of concordance with the adjusted R2 value of 0.9737. The recommended optimal conditions proposed by response surface methodology (RSM) consisted of a pH value of 10.56, a contact time of 16.52 h, and a sulfuric acid concentration of 1.80 M in order to achieve a nickel concentration of 28,415 mg/L.1