Publications 2018
Permanent URI for this collection
Browse
Browsing Publications 2018 by Author "Abbasi Q.H."
Results Per Page
Sort Options
-
PublicationCritical data-based incremental cooperative communication for wireless body area network( 2018-11-01)
;Al-Mishmish H. ;Alkhayyat A. ;Rahim H.A. ;Hammood D.A. ;Ahmad R.B.Abbasi Q.H.Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body’s vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission (‘direct transmission’) is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC. -
PublicationReliable emergency data transmission using transmission mode selection in wireless body area network( 2018-01-01)
;Abdulmohsin Hammood D. ;Rahim H.A. ;Alkhayyat A. ;Ahmed R.B.Abbasi Q.H.The main differences between wireless body area network (WBAN) and wireless sensor network are the sensors in WBAN distributed on the human body; therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the links between sensors and destination. Second, data gathered by the sensors are related to human life; therefore, it is important to make sure that the gathered data should be delivered to destination efficiently. Hence, in some cases, single-hop transmission or direct transmission mode (DTM) is not sufficient to deliver the data to the destination. In this paper, we proposed an emergency-based cooperative communication protocol for WBAN, named as Emergency Data Transmission using Transmission Mode Selection (ED-TMS) protocol based on the IEEE 802.15.6 CSMA. First, a complete study of a system model is inspected in terms of channel path loss, successful transmission probability, and the outage probability. Second, a mathematical model of the proposed protocol, end-to-end delay, and throughput with relay selection (RS) is derived. Third, RS is utilized along with ED-TMS, which makes only the best relay participate in cooperation in a distributed manner. The design objective of the ED-TMS is to reduce end-to-end delay and enhance the throughput of direct transmission and traditional cooperative communication. The simulation and numerical results show that the ED-TMS can enhance network performance under general conditions compared to DTM IEEE 802.15.6 CSMA and benchmark. The end-to-end delay reductions of ED-TMS with RS with respect to DTM, mutual information incremental cooperative communication, and ED-TMS without RS are 24.5%, 28%, and 30%, respectively.