Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Faculty of Mechanical Engineering & Technology (FTKM)
  4. Journal Articles
  5. Statistical analysis on the near-wake region of RANS turbulence closure models for vertical axis tidal turbine
 
Options

Statistical analysis on the near-wake region of RANS turbulence closure models for vertical axis tidal turbine

Journal
International Journal of Renewable Energy Development
ISSN
2252-4940
Date Issued
2022
Author(s)
Muhammad Wafiuddin Abd Rahim
Universiti Malaysia Perlis
Anas Abdul Rahman
Universiti Malaysia Perlis
Ayu Abdul-Rahman
Universiti Utara Malaysia
Muhammad Izham Ismail
Universiti Malaysia Perlis
Mohd Shukry Abdul Majid
Universiti Malaysia Perlis
Nasrul Amri Mohd Amin
Universiti Malaysia Perlis
DOI
10.14710/ijred.2023.48380
Abstract
The flow field in the near wake region (up to six turbine diameters downstream) of a tidal current turbine is strongly driven by the combined wake of the device support structure and the rotor. Accurate characterisation of the near-wake region is important, but it is dominated by highly turbulent, slow-moving fluid. At present, limited number of research has been undertaken into the characterisation of the near-wake region for a Vertical Axis Tidal Turbine (VATT) device using the Reynolds Averaged Navier Stokes (RANS) model in the shallow water environment of Malaysia. This paper presents a comprehensive statistical analysis using the Mean Absolute Error (MEA), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) on the near-wake region for shallow water application by comparing numerical solutions (i.e., different types of RANS turbulence models using Ansys Fluent) with published experimental data. Seven RANS turbulence models with a single VATT, represented by using a cylindrical object, were employed in the preliminary study. The statistical analysis performed in this study is essential in exploring and giving a detailed understanding on the most suitable RANS turbulence model to be improved, specifically on its near-wake region. In this study, the near wake region is defined as D ≤ 6, where D is the device diameter. The analysis shows that the RANS numerical solutions are unable to accurately replicate the near-wake region based on large statistical errors computed. The average RMSE of near-wake region at z/D = [2, 3, 4, 6] are 0.5864, 0.4127, 0.4344 and 0.3577 while the average RMSE at far-wake region z/D = [8, 12] are 0.2269 and 0.1590, where z is the distance from the cylindrical object along the length of domain. The statistical error values are found to decrease with increasing downstream distance from a cylindrical object. Notably, the standard k–ε and realizable k–ε models are the two best turbulent models representing the near-wake region in RANS modelling, yielding the lowest statistical errors (RMSE at z/D = [2, 3, 4, 6] are 0.5666, 0.4020, 0.4113 and 0.3455) among the tested parameters
File(s)
Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine (190424).pdf (2.24 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
Downloads
9
Acquisition Date
Nov 19, 2024
View Details
google-scholar
  • About Us
  • Contact Us
  • Policies