Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Center of Excellence, Water Research and Environmental Sustainability Growth (WAREG)
  4. Journal Articles
  5. Performance optimization of sulfur dioxide (So2) desulfurization by oil palm-based activated carbon using box-behnken design
 
Options

Performance optimization of sulfur dioxide (So2) desulfurization by oil palm-based activated carbon using box-behnken design

Journal
Biointerface Research in Applied Chemistry
Date Issued
2022-12-15
Author(s)
Sooriyan S. Kathiroly
Universiti Malaysia Perlis
Naimah Ibrahim
Universiti Malaysia Perlis
Muhammad Adli Hanif
Universiti Malaysia Perlis
Masitah Hasan
Universiti Malaysia Perlis
Abdullah S.
Adriansyah A.A.
Setianto B.
Syafiuddin A.
DOI
10.33263/BRIAC126.79727982
Abstract
Sulfur dioxide (SO2) emission into the atmosphere brought by the burning of fossil fuels in the industries posed significant negative effects on the environment and human beings. Adsorption using activated carbon from agricultural wastes is a viable method commonly used to counter this major problem. SO2 breakthrough experiment was conducted on a fixed bed reactor using oil palm empty fruit bunch activated carbon. The sorbent utilized in this study was characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Three parameters, i.e., reaction temperature, inlet SO2 concentration, and adsorbent dosage, were optimized using Box-Behnken Design. The highest SO2 removal was obtained at 70 °C, 2000 ppm of SO2, and 1 g of adsorbent with adsorption capacity of approximately 1101 mg SO2 /g activated carbon. The developed model was validated using Analysis of Variance (ANOVA), and good agreement between predicted and actual values was obtained. Inlet SO2 concentration, adsorbent dosage, the interaction between these two parameters, and all quadratic terms were found to be significant factors, with adsorbent dosage being most significant based on its highest F-value.
Subjects
  • Activated carbon | Bo...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies