Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Effect of combination printing parameter (infill density and raster angle) on the mechanical and electrical properties of 3D printed PLA/ZnO and cPLA/ZnO composites
 
Options

Effect of combination printing parameter (infill density and raster angle) on the mechanical and electrical properties of 3D printed PLA/ZnO and cPLA/ZnO composites

Journal
Journal of Polymer Engineering
ISSN
03346447
Date Issued
2022-04-01
Author(s)
Tan M.A.
Yeoh C.K.
Teh P.L.
Nor Azura Abdul Rahim
Universiti Malaysia Perlis
Song C.C.
Mansor N.S.S.
DOI
10.1515/polyeng-2021-0207
Abstract
3D printed polylactic acid (PLA) composites reinforced with zinc oxide (ZnO) were successfully fabricated by attaching a ZnO dispenser beside a MendelMax RepRap Printer. Mechanical and electrical testings were performed to characterize the properties of PLA/ZnO and cPLA/ZnO composites. PLA polymer filament is a biodegradable material with the same strength and modulus as other plastic materials. This work emphasizes the effects of printing parameters (infill density and raster angle) on the mechanical properties and electrical conductivity of PLA/ZnO composites. The combination of 100% infill density and 0° raster angle resulted in a substantial increase in the tensile strength and Young's modulus, but reduction in break elongation. As the infill density increased and shifted from 90° to 0° raster angle, the storage modulus was enhanced but the damping factor declined. Scanning electron microscope images proved ZnO was dispersed in the PLA matrix. Optical measurements showed a large air gap across the 35% compared to the 100% infill density. Conductive PLA composites (cPLA/ZnO) enhanced electrical conductivity when increasing infill density compared to PLA composites. Therefore, optimizing printing parameters could help manufacturers provide superior quality structure and cPLA composites for electrical and electronic applications due to good electrical conductivity.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • 3D printing | additiv...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies