Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Other Publications
  5. An improved defect classification algorithm for six printing defects and its implementation on real printed circuit board images
 
Options

An improved defect classification algorithm for six printing defects and its implementation on real printed circuit board images

Journal
International Journal of Innovative Computing, Information and Control
ISSN
1349-4198
Date Issued
2012
Author(s)
Ismail. Ibrahim
Universiti Teknologi Malaysia
Zuwairie Ibrahim
Universiti Malaysia Pahang Al-Sultan Abdullah
Kamal Khalil
Universiti Teknologi Malaysia
Musa Mohd Mokji
Universiti Teknologi Malaysia
Syed Abdul Rahman Syed Abu Bakar
Universiti Teknologi Malaysia
Norrima Mokhtar
Universiti Malaya
Wan Khairunizam Wan Ahmad
Universiti Malaysia Perlis
DOI
http://www.ijicic.org/10-11079-1.pdf
Abstract
Because decisions made by human inspectors often involve subjective judg- ment, in addition to being intensive and therefore costly, an automated approach for printed circuit board (PCB) inspection is preferred to eliminate subjective discrimination and thus provide fast, quantitative, and dimensional assessments. In this study, defect classi cation is essential to the identi cation of defect sources. Therefore, an algorithm for PCB defect classi cation is presented that consists of well-known conventional op- erations, including image difference, image subtraction, image addition, counted image comparator, ood- ll, and labeling for the classi cation of six different defects, namely, missing hole, pinhole, underetch, short-circuit, open-circuit, and mousebite. The de- fect classi cation algorithm is improved by incorporating proper image registration and thresholding techniques to solve the alignment and uneven illumination problem. The improved PCB defect classi cation algorithm has been applied to real PCB images to successfully classify all of the defects.
Subjects
  • Printed circuit board...

  • Defect classification...

  • Defect detection

File(s)
An improved defect classification algorithm.pdf (32.79 KB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies