Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Institute of Engineering Mathematics (IMK)
  4. Conference Publications
  5. Slip effect on unsteady hybrid nanofluid flow over a stretching/shrinking surface
 
Options

Slip effect on unsteady hybrid nanofluid flow over a stretching/shrinking surface

Journal
AIP Conference Proceedings
ISSN
0094-243X
Date Issued
2023
Author(s)
Najwa Najib
Universiti Sains Islam Malaysia
Nor Ashikin Abu Bakar
Universiti Malaysia Perlis
Nor Fadhilah Dzulkifli
Universiti Teknologi MARA
DOI
10.1063/5.0162789
Handle (URI)
https://pubs.aip.org/aip/acp/article-abstract/2872/1/120025/2913589/Slip-effect-on-unsteady-hybrid-nanofluid-flow-over?redirectedFrom=fulltext
https://pubs.aip.org/aip
https://hdl.handle.net/20.500.14170/15444
Abstract
The focus on this paper is to investigate the effect of slip in hybrid nanofluid past a stretching/shrinking surface by depending on time. The partial differential equations of governing equations are transformed to ordinary differential equations by employing appropriate similarity transformation. The equations are then solved numerically using bvp4c function in MATLAB software. The results of skin frictions coefficient and heat transfer rate are depicted in tables and graphs. It poses dual solutions for a certain domain of each solution.
File(s)
Slip effect on unsteady hybrid nanofluid flow over a stretching shrinking surface.pdf (86.95 KB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies