Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Aerial image semantic segmentation based on 3D fits a small dataset of 1D
 
Options

Aerial image semantic segmentation based on 3D fits a small dataset of 1D

Journal
IAES International Journal of Artificial Intelligence
ISSN
20894872
Date Issued
2023-12-01
Author(s)
Ahmed S.A.
Hazry Desa
Universiti Malaysia Perlis
Hussain A.S.T.
DOI
10.11591/ijai.v12.i4.pp2048-2054
Abstract
Time restrictions and lack of precision demand that the initial technique be abandoned. Even though the remaining datasets had fewer identified classes than initially planned for the study, the labels were more accurate. Because of the need for additional data, a single network cannot categorize all the essential elements in a picture, including bodies of water, roads, trees, buildings, and crops. However, the final network gains some invariance in detecting these classes with environmental changes due to the different geographic positions of roads and buildings discovered in the final datasets, which could be valuable in future navigation research. At the moment, binary classifications of a single class are the only datasets that can be used for the semantic segmentation of aerial images. Even though some pictures have more than one classification, images of roads and buildings were only found in a significant number of samples. Then, the building datasets were pooled to produce a larger dataset and for the constructed models to gain some invariance on image location. Because of the massive disparity in sample size, road datasets needed to be integrated.
Funding(s)
Universiti Malaysia Perlis
Subjects
  • Aerial image | Datset...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies