Waste tire management and recycling have grown to be significant issues because they bring up a global environmental concern. Thus, turning recycled waste tires into useful products may help tackle the environmental issue. This research aims to study and compare the effect of recycled carbon black (rCB) and commercial carbon black (CB) at certain 15 vol. % of filler loading on the mechanical, thermal, morphology and electrical properties of epoxy/CB composites. For this project, epoxy resin, diethyltoluenediamine (DETDA), recovered carbon black (rCB) and commercial carbon black (CB) graded N330, N550, N660 and N774 were mixed and compared accordingly to the formulation determined. The CB content was dispersed in the epoxy matrix using the mechanical mixing technique. The distribution and dispersion of CB in the epoxy matrix affect the characteristics of the conductive composites. rCB content at 15 vol% was selected at fixed content for comparison purposes due to the optimum value in electrical conductivity results. The flexural strength results followed the sequence of rCB>N774>N660>N550>N330. As for electrical conductivity results, epoxy/N330 exhibited the highest conductivity value, while the others achieved a magnitude of X10-3 due to the highest external surface area of N330. In terms of thermal stability, epoxy/N330 and epoxy/N774 were slightly more stable than epoxy/rCB.